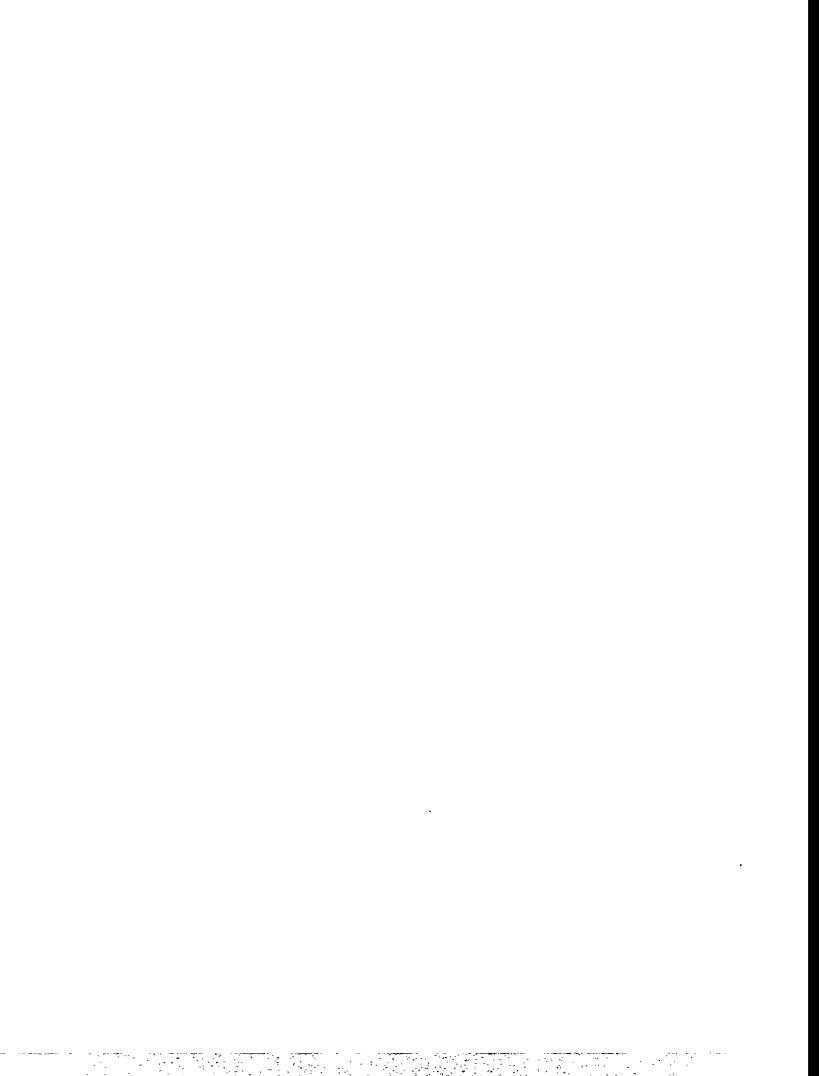
A Characterization and Evaluation of **Coal Liquefaction Process Streams**

Quarterly Technical Progress Report July 1 through September 30, 1995

G. A. Robbins, S. D. Brandes, R. A. Winschel and F. P. Burke

December 1995


CONSOL Inc. Research & Development 4000 Brownsville Road Library, PA 15129

Under Contract to:

United States Department of Energy Contract No. DE-AC22-94PC93054

U.S. DOE PATENT CLEARANCE IS NOT REQUIRED PRIOR TO THE PUBLICATION OF THIS DOCUMENT.

TABLE OF CONTENTS

		<u> Page</u>
Inspect	SUMMARY erization of Samples from HTI Run CMSL-9 ion Tests on Net Products from HTI Runs POC-1 and POC-2 eactivity	1 1 2 2
Contrac	ON t Overview t Activities this Quarter ies in Progress	4 4 4 5
Progress Run CMS Intro Samp Anal; Dispo Chars Chars Inspect Intro Samp Disco SARA (Sa Manganes Cross Po Analys EXPERIMENTA SARA Sep Mater Aspha and	oduction le Distribution ysis Strategy ersed Catalyst Operation ene Found in Period 19 VSOH acteristics of SOHs and CAS Bottoms Distillates acteristics of CAS Bottoms and PFLs ion Tests on Net Products from HTI Runs POC-1 and POC-2 oduction les and Testing ussion aturates, Aromatics, Resins, Asphaltenes) Separation se Contamination in STBR Product Samples olarization/Magic Angle Spinning (CP/MAS) ¹³ C-NMR is of Resid Samples	7 7 7 7 8 8 9 9 11 11 12 13 15 16 17 17 17 18 18
REFERENCES		20
<u>Table</u>	LIST OF TABLES	<u>Page</u>
	Complete Freetienstad by CARA T. I. t	
1 2	Samples Fractionated by SARA Technique and Charac- terized by ¹³ C-NMR SARA (Saturates, Aromatics, Resins, Asphaltenes)	21
	Separation Experimental Procedure	22
3	Analysis of Solid Portion of STBR Reaction Products (University of Delaware Sample Set)	23

<u>Table</u>	F131 OF TABLES (CONTINUED)	<u>Page</u>
4 5	Carbon Structural Parameters Determined by ¹³ C-NMR	26
5	Average Molecular Structural Descriptors (Lattice Parameters) Determined by ¹³ C-NMR	26
	LIST OF APPENDICES	
<u>Appendix</u>		<u>Page</u>
1	Sample Request CMSL-11	1-1
2	Sample Request POCB-1	2-1
3	POC-1 Results - Conoco	3-1
2 3 4 5	POC-2 Results - Conoco	4-1
5	WRI CP/MAS ¹³ C-NMR Analyses of 15 Coal-Derived Resid	
·	Samples	5-1
6	University of Nelaware Augrterly Report	6-1

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Section 1 EXECUTIVE SUMMARY

CHARACTERIZATION OF SAMPLES FROM HTI RUN CMSL-9

CONSOL received and partially completed analyses of 81 feed and process stream samples from HTI liquefaction bench run CMSL-9 (227-87). Reported here are highlights of characterization results obtained to date from these samples; a full report will be given later. Run CMSL-9 was operated entirely with dispersed catalyst and Black Thunder Mine coal, with and without mixed plastics or high density polyethylene (HDPE) as coprocessing feedstocks. Samples from the run were provided to DOE/PETC.

Interstage and pressure-filter liquid (PFL) or vacuum still overhead (VSOH) oils, and to a lesser degree, separator overhead (SOH) oils from coal-only periods with dispersed catalyst operation in Run CMSL-9, showed proton distributions that reflect a lower degree of hydrogenation than corresponding samples from thermal/catalytic Run CC-15 and from catalytic/ catalytic Run CC-1, both made with Black Thunder coal and supported catalyst.

A large amount of toluene was found in the period 19 VSOH sample; its presence may be related to preparation and use of dry, toluene-washed pressure-filter cake (PFC) from earlier in the run, which was used as the source of recycled Mo catalyst during Condition 4 (periods 15-19).

Separator overhead oils (SOHs) from many coal-only and coal/plastic periods contain sediments; the sediments have not been characterized. Relative amounts of n-paraffins as determined by gas chromatography-mass spectrometry (GC-MS) in the SOHs and 850 °F distillates from continuous atmospheric still (CAS) bottoms appear to increase according to the following trend: periods 5 and 29 (coal) < period 34 (coal/mixed plastics) < period 38 (coal/HDPE) and period 41 (coal/mixed plastics). Differences between the characteristics of SOHs from periods 34 and 41 may have resulted from the higher wt % plastics feed in period 41 (50 wt % vs 33 wt %), the use of vacuum distillation in period 34 vs pressure filtration in period 41, and the lack of ashy recycle in period 41.

The light color and low ash content of resid tetrahydrofuran (THF) insolubles from coal/plastics periods 38 and 41 CAS bottoms samples seem to indicate high HDPE concentration. The corresponding PFL samples were found to contain about 20 to 25 wt % THF insolubles, presumed to be incompletely converted HDPE. There was some evidence of phase separation on cooling of the distillation bottoms from one coal/mixed plastics period CAS bottoms sample. The layers were less distinct than was observed with the PFL resids obtained from Run CMSL-8. In general, the CAS bottoms samples from coal/plastics periods showed proton distributions consistent with the paraffinic character of the CAS bottoms and with increased hydrogenation when coal and plastics were fed, compared to corresponding samples from coal-only periods.

INSPECTION TESTS ON NET PRODUCTS FROM HTI RUNS POC-1 AND POC-2

A suite of inspection tests was performed on the net distillate products of HTI Runs POC-1 and POC-2. The samples tested were aliquots of the two materials tested by Southwest Research Institute (SwRI) under the DOE Refining and End Use Study of Coal Liquids project. Both oils are nearly devoid of metals and atmospheric resid and have very low sulfur and nitrogen contents. The fractions of both oils have excellent oxidation stability and excellent copper corrosion test performance. The octane numbers are comparable to those from straight-run petroleum naphthas. Although both oils appear to be of high quality as refinery feedstocks, the POC-2 oil is of higher quality.

RESID REACTIVITY

The fifteen resid samples being used in the resid reactivity study were separated by solubility and chromatographic techniques to provide information on the quantity of different classes of compounds found in the resids. This information will be used in construction of the resid reactivity model being developed by the University of Delaware under this contract. The sample fractions were sent to the University of Delaware where molecular weights will be determined by vapor phase osmometry (VPO). These molecular weight data also will be used in construction of the resid reactivity model.

Cross polarization/magic angle spinning (CP/MAS) 13 C-NMR spectrometry was used to analyze the resid reactivity sample set. A set of twelve carbon structural parameters and average molecular structural descriptors were derived for each

resid from the NMR analysis. These data will be used by Delaware in construction of the kinetic model of the reactivity of coal-derived resids.

Analysis of products of short-time batch reactor (STBR) studies performed at the University of Delaware show the samples to contain high manganese contents. It appears likely that the presence of Mn in the samples arises from abrasion or leaching of the reactor walls.

Section 2 INTRODUCTION

This is the Technical Progress Report for the fifth quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period July 1 through September 30, 1995.

CONTRACT OVERVIEW

The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. This project will build on work performed in DOE Contract No. DE-AC22-89PC89883. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction.

CONTRACT ACTIVITIES THIS QUARTER

• We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed. Analysis priority was given to the coal/plastics period samples, especially to the continuous atmospheric still (CAS) bottoms and separator overheads (SOH) streams. Highlights of results obtained to date appear in this report. Samples were distributed to DOE/PETC.

- A suite of inspection tests was completed on the net distillate products of HTI Runs POC-1 and POC-2. Results are described in the Discussion section of this report, and presented in Appendices 3 and 4.
- Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed. The data were transmitted to Delaware for use in construction of the resid reactivity model. The experimental method used and results obtained are described in the Discussion section of this report.
- WRI completed CP/MAS ¹³C-NMR analyses on the Delaware sample set. These data also will be used by Delaware in the kinetic model. The data are presented in Appendix 5 of this report.
- A review was made of elemental analyses obtained on 29 STBR product samples. Some of the samples have substantial amounts of manganese in the ash. The data are presented in the Discussion section of this report.
- A conference call was held with Delaware to discuss catalyst choice for future work.
- A visit was made to the University of West Virginia to discuss possible teaming arrangements.
- The University of Delaware continues to make good progress on the resid reactivity task; the Delaware Quarterly Report is appended to this report (Appendix 6).

ACTIVITIES IN PROGRESS

- Twenty-three samples were received from HTI bench-scale Run CMSL-10.
 Samples will be distributed to other research groups on request.
- Run POCB-1 (Appendix 2).

- In-house experimental work began on Task 1.4 Structure and Reactivity. The in-house work will supplement resid reactivity data being generated by the University of Delaware.
- Several different methods are being evaluated for separating or quantifying unconverted polyethylene in coal/waste co-liquefaction products and intermediate streams. The methods include hot filtration, petrographic and fluorescence microscopy, and flow field flow fractionation. Earlier work showed some utility in field ionization mass spectrometry and infrared spectroscopy.

Section 3 RESULTS AND DISCUSSION

PROGRESS OF CONSOL CHARACTERIZATION OF SAMPLES FROM HTI RUN CMSL-9 INTRODUCTION

CONSOL partially completed analyses of 81 feed and process stream samples from HTI bench Run CMSL-9. Reported below are highlights of characterization results obtained to date from these samples. Complete characterization results and analytical data will be reported at a later time. HTI liquefaction bench unit Run CMSL-9 (227-87) was operated with all-dispersed catalyst and Black Thunder Mine (Wyodak and Anderson seam) coal, with and without mixed plastics or high density polyethylene (HDPE) as coprocessing feedstocks. The dispersed catalysts used were Molyvan A and HTI's iron catalyst, a sulfated iron hydroxide.

SAMPLE DISTRIBUTION

A list of samples received from HTI Run CMSL-9 (81 samples from nine periods of operation) was provided to PETC and CFFLS. Thirty-three requested samples from one coal period and the three coal/plastics periods of Run CMSL-9 were provided to K. Rothenberger at DOE/PETC.

ANALYSIS STRATEGY

An overall analytical plan for samples from Run CMSL-9 was presented in the previous quarterly technical report. HTI switched from solids separation by filtration to vacuum distillation early in the run, and then returned to filtration late in the run. There are difficulties in directly comparing vacuum still overheads (VSOHs) with pressure-filter liquids (PFLs), or vacuum still bottoms (VSBs) with pressure-filter cakes (PFCs), especially from coal/plastics liquefaction. This is because the unconverted HDPE is expected to be found in the PFL, but not in the VSOH (it melts and dissolves in the filtrate, but is non-distillable). For this reason, much of the early analytical effort was concentrated on the continuous atmospheric still (CAS) bottoms. The CAS bottoms is the feed stream to both filtration and vacuum distillation, and thus, is a good sample for comparison.

DISPERSED CATALYST OPERATION

Although a complete set of Run CMSL-9 sample analyses was not available, some results from coal-only dispersed catalyst operation in Run CMSL-9 were compared with data from other Black Thunder coal runs in which supported catalyst was used. Run CC-15 was operated in the thermal/catalytic configuration with Shell S-317 Ni/Mo supported extrudate catalyst in the second-stage reactor. The period of Run CC-15 used for this comparison (period 8) was made with a dispersed hydrous iron hydroxide catalyst precursor impregnated in the coal. Results are compared with those of previous HRI CTSL bench unit Run CC-1, which was operated in the catalytic/catalytic configuration, also with Shell S-317 catalyst. Period 16 of Run CC-1 was used for this comparison. The periods of Run CMSL-9 which were compared were periods 5 and 29, in which coal alone was the feedstock. Space velocity was approximately 50% higher in Run CMSL-9 than in Runs CC-1 and CC-15. Differences in other conditions would also affect oil characteristics.

Interstage and PFL or VSOH oils from all-dispersed catalyst operation in Run CMSL-9 were significantly more aromatic (25 to 30% vs. 15 to 20% aromatic protons), less hydroaromatic (12% vs ca. 17% cyclic beta protons), and less paraffinic (30 to 35% vs. 40 to 45% alkyl beta plus gamma protons) than corresponding oils from comparison periods of Runs CC-15 and CC-1. Furthermore, the SOH oils from all-dispersed catalyst operation in Run CMSL-9 which were exposed to supported catalyst in the in-line hydrotreater were more aromatic (9 to 16% vs ca. 6% aromatic protons), and less hydroaromatic (16 to 21% vs 22 to 24% cyclic beta protons) than corresponding oils from comparison periods These differences reflect a lower degree of of Runs CC-15 and CC-1. hydrogenation in the samples produced in the absence of supported catalyst in the Factors other than dispersed catalyst use may have liquefaction system. contributed to lower hydrogenation. Although these results indicate lower hydrogenation, HTI found SOHs from these periods of Runs CC-1 and CC-15 to be similar in H/C ratio and API gravity to the SOH from period 5 of Run CMSL-9.2 Additional comparisons of properties of liquids produced with all-dispersed catalyst will be made when the analyses are complete.

TOLUENE FOUND IN PERIOD 19 VSOH

The presence of a large amount of toluene in the period 19 VSOH sample from HTI Run CMSL-9 was detected by proton NMR spectroscopy and gas chromatography-mass

spectrometry (GC-MS). V. Pradhan of HTI was informed about the presence of toluene in this sample. He indicated that the origin may have been distillation of a toluene-washed filter cake. This seems to have resulted somehow from preparation and use of dry, toluene-washed pressure-filter cake (PFC) from earlier in the run as the source of recycled Mo catalyst during Condition 4 (periods 15-19).

CHARACTERISTICS OF SOHS AND CAS BOTTOMS DISTILLATES

Separator overhead oils (SOHs) from many coal-only and coal/plastic periods contain sediments; the sediments have not been characterized. Sediment in the distillate product was previously observed only in the coal/plastics period of Run POC-2; it had not been previously observed, nor was it found in SOHs from Run CMSL-8.

SOHs and CONSOL-generated 850 °F distillates from continuous atmospheric still bottoms (CAS bottoms) samples from two coal-only periods and the three coal/plastics periods were characterized by gas chromatography-mass spectrometry (GC-MS). Relative amounts of n-paraffins in the oils appear to increase according to the following trend: periods 5 and 29 (coal) < period 34 (coal/mixed plastics) < period 38 (coal/HDPE) and period 41 (coal/mixed plastics). CAS bottoms 850 °F distillates from periods 38 and 41 contain such high concentrations of paraffins that other components appear as only minor peaks in the GC-MS chromatogram. Paraffinic protons (alkyl beta and gamma) account for over 60% of the hydrogen in the period 41 CAS bottoms distillate.

CHARACTERISTICS OF CAS BOTTOMS AND PFLs

The period 38 CAS bottoms 850 °F⁺ distillation resid appeared to consist of two layers, but the layers were similar in appearance and not distinctly separable based on physical characteristics such as brittleness (i.e., they could not be easily separated by breaking). These materials are different from the distillation bottoms of CMSL-8 PFLS. In those samples, layers with distinctly different properties were observed to separate, as reported last quarter.¹

The tetrahydrofuran (THF) insoluble portions of CAS bottoms 850 °F⁺ resid samples from periods 38 and 41 of the three Run CMSL-9 coal/plastics periods were light in color and low in ash content, most likely the result of a high HDPE concentra-

tion. In contrast, the corresponding period 34 sample was mostly black in color, but was inhomogeneous in appearance, with tan-colored particles in addition to black ones.

In general, the CAS bottoms samples from coal/plastics periods were lower in aromatic protons, lower in cyclic beta (hydroaromatic) protons, and higher in alkyl beta plus gamma protons (as a rough measure of paraffinic protons) than corresponding samples from coal-only periods. This seems to be consistent with the paraffinic character of the CAS bottoms and with the idea that the oils were more highly hydrogenated when coal and plastics were fed.

The PFL samples from coal/mixed-plastics periods 38 and 41 of HTI Run CMSL-9 were found to contain about 20 to 25 wt % THF insolubles, presumed to be incompletely converted HDPE.

INSPECTION TESTS ON NET PRODUCTS FROM HTI RUNS POC-1 AND POC-2 INTRODUCTION

A suite of inspection tests was performed on the net distillate products of HTI Runs POC-1 and POC-2. The testing plan (reported previously³) was formulated in conjunction with Dr. P.-Z. Zhou of Burns and Roe Services Co. The samples tested were aliquots of the two materials tested by Southwest Research Institute (SwRI) under the DOE Refining and End Use Study of Coal Liquids project (DOE Contract No. DE-AC22-93PC91029). The testing plan arranged by CONSOL included numerous tests, some which also are being conducted by SwRI on different aliquots of the same samples, and some which are not. Thus, the CONSOL test plan supplements the SwRI test plan as well as provides an independent check on it. The data provided here will be used to better define the value and the refining requirements of coal liquids.

SAMPLES AND TESTING

Two samples were provided to CONSOL by Mr. Jimell Erwin of SwRI:

- 1) Net distillate product of HTI Run POC-1. Six gallons were provided in a 5 gal and a 1 gal metal can. They were received at CONSOL on 6/10/94 and bore an SwRI sample number FL-2236 (DL-1). HTI Run POC-1 (also known as Run 260-04) was conducted in late 1993 and early 1994 with Illinois 6 coal. Two ebullated-bed catalytic reactors were used. The in-line hydrotreater was in place, but slip-streaming prevented it from being effective.
- 2) Net distillate product of HTI Run POC-2. Six gallons were provided in a 5 gal and a 1 gal metal can. The samples were shipped from SwRI on 10/13/94; the SwRI sample number was FL-2364 (DL-2). The assigned CONSOL sample number was 185-1621-33. HTI Run POC-2 (also known as Run 260-05) was conducted in June and July 1994 with Black Thunder Mine subbituminous coal. Two ebullated-bed catalytic reactors were used. The in-line hydrotreater was in place and operational.

The two samples were shipped for testing to Conoco Inc., Research and Engineering Dept., Ponca City, OK on March 14 and 16, 1995. The testing at Conoco was conducted under the direction of Mr. Dale Cabbiness. Conoco arranged to have the octane testing performed at Phillips Petroleum Co., Bartlesville, OK. Conoco's

complete reports appear as Appendices 3 and 4. The specific test methods used by Conoco appear at the end of each report. The D86 distillations were conducted with 100 mL samples. Thus, the volumes in mL (provided in the Conoco reports) are equivalent to volume %. Several explanatory notes are in order concerning the paraffins, olefins, naphthenes and aromatics (PONA) analyses conducted by Conoco. The olefins, aromatics, and paraffins plus naphthenes were determined by fluorescence indicator analysis (FIA) on the 180-350 °C, 350-400 °C, and 400-500 °C fractions. Paraffins, naphthenes, and aromatics also were determined by gas chromatography (GC) on a separate sample of all six fractions from the IBP-180 °C fraction to the 550-650 °C fraction. Any olefins present are accounted during the GC analysis as their saturated analog; i.e., either a paraffin or a naphthene. Thus, olefins may be doubly accounted if the olefin data from the FIA analysis are combined with the paraffin data from the GC analysis. However, more importantly, the GC method is unable to detect high-boiling components. Thus, the data from the GC method for the fractions with boiling points greater than 180 °C are incomplete.

DISCUSSION

Both materials are atmospheric distillates, 94 wt % or greater boils below 650 °F. The yields of the seven distillate fractions are quite similar for the two oils. Both yield about 28 wt % naphtha (IBP-350°F), about 9 wt % swing cut (350-400 °F), about 22 wt % kerosene (400-500 °F), about 37 wt % diesel fuel cut (500-650 °F), and about 5 wt % atmospheric resid (650 °F⁺). Both oils are nearly devoid of metals and atmospheric resid and have very low sulfur and nitrogen contents. The fractions of both oils have excellent oxidation stability and excellent copper corrosion test performance. The octane numbers are comparable to those from straight-run petroleum naphthas. However, the fractions of both oils failed the JFTOT thermal stability test.

Although both oils appear to be of high quality as refinery feedstocks, the POC-2 oil is of higher quality. This is evidenced by the lower concentrations of nitrogen, basic nitrogen, sulfur, mercaptan sulfur, and oxygen, the lower aromatics and olefins contents, the lower existent gum results, and the higher hydrogen content and higher smoke point of the POC-2 whole oil or its fractions.

SARA (SATURATES, AROMATICS, RESINS, ASPHALTENES) SEPARATION

Separation of fifteen 850 °F+ coal-derived resid samples by solubility and chromatography separation techniques was carried out to provide information on the quantity of different classes of compounds found in the resids. This information will be used in construction of the resid reactivity model being developed by the University of Delaware under this contract. The sample fractions were sent to the University of Delaware, where molecular weights will be determined by vapor phase osmometry (VPO). These molecular weight data also will be used in construction of the resid reactivity model.

The separation technique used was requested by the University of Delaware to provide data for the modeling study in a form with which they are familiar. It is a variation on the SARA separation method.⁴ In this scheme, the samples are separated into saturate, aromatic, resin, and asphaltene fractions which are defined as follows. Asphaltenes are defined as heptane insolubles; in the case of the resids separated in this work, this fraction also includes insoluble organic matter and mineral matter. The saturates, aromatics, and resins are fractionated on a silica gel liquid chromatography column. The saturates are eluted with heptane, the aromatics are eluted with a 50/50 vol % solution of heptane and toluene, and the resins are removed from the column with 50/25/25 vol % solution of methanol, toluene, and petroleum ether followed by neat petroleum ether.

The definition of the asphaltene fraction as a heptane-insoluble material is not consistent with the solubility definition commonly used by CONSOL. CONSOL's definition for the asphaltene fraction of coal liquids is the benzene-soluble, hexane-insoluble portion of the oil. Therefore, the asphaltene fraction isolated in the SARA method was further fractionated into toluene-soluble and toluene-insoluble fractions. The toluene insolubles then were fractionated into THF-solubles and THF-insoluble material (IOM and ash).

The detailed experimental procedure is provided in Section 4. Table 1 gives a description of the resids. Table 2 contains the separation data for the fifteen resid samples. There are no apparent correlations between the distribution of the fractions obtained in the separations and the known parameters associated with the samples such as feed coal, sampling location in the liquefaction plant,

or H/C ratio. However, a clear distinction can be made between materials produced in the HTI facility and in the Wilsonville facility. The HTI materials (SARA Runs 14 and 15) contain about 4 to 10 times less asphaltene fraction and 2 to 20 times more saturates than the Wilsonville materials.

MANGANESE CONTAMINATION IN STBR PRODUCT SAMPLES

The solids portion of twenty-nine reaction products from experiments performed in Delaware's STBR were analyzed; the results of the analyses were provided $previously^1$ and are reproduced in Table 3. These samples were produced from the 850 $^{\circ}F^{+}$ resid of Wilsonville Run 258 V131 B (recycle stream) using either sulfided molybdenum naphthenate obtained from Shepherd Chemical Co. or sulfided Shell 324 Ni/Mo on alumina catalyst. A review of the ash elemental analyses showed the samples to contain an unexpectedly high Mn content (measured as MnO_2). The ash analysis of the starting resid was reviewed and the MnO2 content was found to be <0.01 wt %. The two different catalysts used in Delaware's tests, the Shell 324 supported catalyst and the homogeneous molybdenum naphthenate catalyst were analyzed. The Shell 324 catalyst was found to contain <0.01 wt % MnO₂ in the ash. An analysis of the Mo naphthenate precursor was received from Shepherd Chemical Co.; the precursor contains <10 ppm Mn. Shepherd does not believe there was introduction of Mn in the production of the molybdenum form of the naphthenate. The CONSOL analysis of the Mo naphthenate catalyst confirms this; the MnO_2 content was found to be 0.03 wt % of the ash and the ash content of the sample was found to be 4.00 wt % of the sample. Renormalization of the sample data presented in Table 3 to a Ni/Mo-free basis was done for runs made with the Mo naphthenate. It also was done for data from runs made with the supported catalyst. In addition, the Al₂O₃ concentration was recalculated so that it would be equivalent to that found in the samples analyzed from the homogeneous catalyst tests (ca. 11 to 13 wt %). Recasting the data in this manner shows that the same amount (about 0.4 wt % of the ash) is MnO2, regardless of the catalyst used. Because the Mn was not introduced with the resid or either of the two catalysts, it appears likely that the Mn arises from leaching or abrading of the reactor or associated tubing.

CROSS POLARIZATION/MAGIC ANGLE SPINNING (CP/MAS) 13C-NMR ANALYSIS OF RESID SAMPLES

Fifteen direct coal liquefaction derived distillation resid materials (Table 1) were analyzed by Western Research Institute (WRI) using cross polarization/magic angle spinning (CP/MAS) ¹³C-NMR spectrometry. From the NMR analysis, WRI derived a set of twelve carbon structural parameters for each resid (as per the method of Pugmire et al.⁵); these twelve parameters are listed in Table 4. Average molecular structural descriptors then were derived from these parameters; these eight descriptors are given in Table 5. These data will be used by the team at the University of Delaware who are constructing, under this contract, a kinetic model of the reactivity of coal-derived resids. WRI's findings are attached to this report as Appendix 5.

Section 4 EXPERIMENTAL

SARA SEPARATION

MATERIALS AND SUPPLIES

Quantities given are for one separation.

Equipment	Size	Materials and Supplies	Quantit y
Soxhlet extractor heating mantle round-bottom flask rotary evaporator chromatography column with frit and reservoir graduated cylinders distillation flasks (4) top loader balance vacuum/drying oven watch glass	500 mL 500 mL 22 x 400 mm 100 mL 250 mL	heptane, Fisher HPLC grade toluene, Fisher HPLC grade methanol, Fisher HPLC grade petroleum ether, Fisher Optima grade THF, freshly distilled silica gel, 70-230 mesh Whatman filter paper, No. 42 washed sand Soxhlet thimble, cellulose	3000 mL 1250 mL 250 mL 750 mL 250 mL 150 mL 80 mm 10 g 26 X 60 mm
Büchner funnel filter flask vacuum tubing trap bottle aspirator	85 mm 1000 mL		
Erlenmeyer flasks (2) magnetic stirring bar magnetic stirrer	500 mL		

ASPHALTENE FRACTION

Warm 200 mL of heptane to ~60 °C in a 500 mL Erlenmeyer flask. Mix 5 g of resid sample into the 200 mL of warm heptane. Mix for one hour keeping heptane at ~60 °C. Continue mixing with no heat for 18 h (overnight). Vacuum filter sample through weighed filter paper using Büchner funnel and Whatman 42 filter paper. Place filter paper and filter cake on tared watch glass in 50 °C oven to dry to constant weight. Scrape dried filter cake into tared Soxhlet thimble. Reweigh Soxhlet thimble and filter cake and calculate amount of material added to thimble. Extract filter cake in Soxhlet extractor with heptane until filtrate is clear. Depending on sample, this may take 48-72 hours. Combine heptane solubles from filter (filtrate) and Soxhlet extractor (extract). Rotovap the heptane-soluble solution in a tared flask, dry in 50 °C oven overnight, weigh and reserve the sample for column chromatography.* Dry the thimble and asphaltenes in a 50 °C oven, weigh, and reserve.

^{*}Note: After drying, this material is no longer completely heptane soluble.

SATURATE, AROMATIC, AND RESIN FRACTIONS

Activate 150 mL of silica gel in an oven at 150 °C for 18 h (overnight). Prepare 1000 mL total, 50 volume % heptane and 50 vol % toluene. Prepare 1000 mL total, 50 vol % methanol, 25 vol % toluene, and 25 vol % petroleum ether. Pack (20 mm x 400 mm) column which has a solvent reservoir with silica gel slurried in heptane. Mix heptane soluble material from filtration and Soxhlet extraction with about 10 mL of tetrahydrofuran (THF), add about 5-10 g clean washed sand. Rotovap off the THF, dry sample in vacuum oven at 50 °C for 12-18 hr to remove all THF. Scrape sample, now coated on sand, from flask. Apply dry granular sample to column. Wash sample remaining in flask from sand with THF, filter and dry. Calculate amount of sample applied to column.

Elute the saturates fraction with heptane. Collect 100 mL aliquots of eluent, rotovap each 100 mL in a tared 250 mL flask and record weight gain. When there is no detectable weight gain (<0.01 g), switch to 50:50 volume mixture of heptane and toluene to elute aromatics. Continue to collect 100 mL aliquots; rotovap aliquots in a second tared flask, and weigh. When weight gain is no longer detectable (<0.01 g), switch to 50:25:25 volume mixture of methanol, toluene, and petroleum ether to elute resins. Continue to collect 100 mL aliquots, rotovap in a third tared flask, and weigh. When no weight gain is detected (<0.01 g), switch to petroleum ether. Fill 250 mL column reservoir and collect petroleum ether fraction in an Erlenmeyer flask. Transfer to the same flask in which the methanol/toluene/petroleum ether fraction was collected. Dry and obtain weight. Dry contents of three flasks in oven at 50 °C under vacuum overnight, record final weights. Calculate percent of each fraction recovered.

ASPHALTENE SEPARATION INTO TOLUENE SOLUBLES, THF SOLUBLES, AND THF INSOLUBLES Replace the Soxhlet thimble containing the heptane-insoluble fraction into the Soxhlet extractor with 200-225 mL toluene. Extract for 48-72 hours until extract is colorless. Remove thimble, dry in 50 °C vacuum oven 18 h (overnight). Weigh thimble with toluene insolubles. Remove toluene from soluble fraction on rotovap, dry in vacuum oven at 50 °C to constant weight. Return thimble to Soxhlet extractor with 200-225 mL THF. Extract in THF for 48-72 hours, until extract is colorless. Dry THF solubles on rotovap and then in vacuum oven at 50 °C for 18 hr; weigh. Dry thimble with THF insolubles in vacuum oven at 50 °C for 18 hr; weigh. Calculate percent toluene solubles, THF solubles, and THF insolubles.

```
CALCULATIONS
```

Asphaltenes (heptane insolubles):

heptane insols (in Soxhlet thimble) (g) x 100 = Asphaltenes (wt %) resid sample (g)

Heptane solubles:

filtrate (g) + extract (g) = heptane solubles (g)

Column charge:

heptane sols (g) - residue in flask after removing sand (g) = column charge (g)

SARA fractions:

 $\frac{\text{Measured weight of recovered fraction (g)}}{\text{column charge (g)}} \times 100 = \% \text{ of column charge}$

% of column charge x heptane solubles (g) = fraction of heptane solubles (g)

 $\frac{\text{fraction of heptane solubles (g)}}{\text{resid sample (g)}} \times 100 = \text{fraction (wt \%)}$

If Σ (fractions (g)) > column charge (g) and column packing is colorless, normalize to 100%.

If Σ (fractions (g)) < column charge (g), calculate loss on column.

Loss on column:

column charge (g) - (saturates (g) + aromatics (g) + resins (g)) = loss on column (g)

 $\frac{\text{loss on column (g)}}{\text{resid sample (g)}} \times 100 = \text{loss on column (wt \%)}$

Overall loss/gain:

100% - (Saturates (wt %) + Aromatics (wt %) + Resins (wt %) + Loss on Column (wt %) + Asphaltenes (wt %)) = Total Overall Loss/Gain (wt %)

Section 5 REFERENCES

- Robbins, G. A.; Brandes, S. D.; Winschel, R. A.; Burke, F. P. "A Characterization and Evaluation of Coal Liquefaction Process Streams, Quarterly Technical Progress Report, April 1 through June 30, 1995", DOE/PC 93054-17, September 1995.
- 2. V. R. Pradhan, personal communication.
- 3. Robbins, G. A.; Brandes, S. D.; Winschel, R. A.; Burke, F. P. "A Characterization and Evaluation of Coal Liquefaction Process Streams, Quarterly Technical Progress Report, January 1 through March 31, DOE/PC 93054-12, May 1995.
- 4. Ruberto, R. G.; Jewell, D. M.; Jensen, R. K.; Cronauer, D. C. Characterization of Synthetic Liquid Fuels *Prep. Pap. Am. Chem. Soc. Div. Fuel Chem.* 1974, 19 (2), 258.
- 5. Solum, M. S.; Pugmire, R. J.; Grant, D. M. Energy and Fuels 1989, 3, 187.

TABLE 1 SAMPLES FRACTIONATED BY SARA TECHNIQUE AND CHARACTERIZED BY $^{13}\text{C-NMR}$

	850°F+ D	istiliation Re	sid Samples
Run	Stream	SARA Run No.	Feed Coal (Seam/Mine)
Wilsonville 258	V 131B	1	Wyodak and Anderson/Black Thunder
Wilsonville 259	V 1067	11	Pittsburgh/Ireland
	R 1235	12	
	V 131B	13	
Wilsonville 260	V 1067	8	Wyodak and Anderson/ Black Thunder
	R 1235	9	
	V 131B	10	
Wilsonville 261	V 1067	3	Illinois No. 6/Burning Star No. 2
	R 1235	4	
	V 131B	2	
Wilsonville 262	V 1067	7	Wyodak and Anderson/ Black Thunder
	R 1235	5	
	V 131B	6	
HTI POC-1	0-43	14	Illinois No. 6/Burning Star No. 2
HTI POC-2	0-43	15	Wyodak and Anderson/Black Thunder

HTI = Hydrocarbon Technologies Inc. W = Wilsonville

R 1235 = interstage steam
V 1067 = 2nd stage product stream
V 131B = recycle stream
O-43 = recycle stream

SARA SEPARATION DATA

wt % Sample

•

RUN	1.	8	8	*	20	8	7	8	9	10*	11*	12	13	14	15
Saturates	1.5	5.1	2.6	9.7	4.5	6.1	6.9	2.9	6.1	4.4	6.1	1.8	2.1	16.4	25.2
Aromatics	23.4	38.0	20.7	29.4	15.4	20.8	21.9	20.4	26.3	28.4	22.7	26.5	31.2	53.1	50.3
Resins	10.6	7.4	20.7	4.2	16.8	11.7	9.1	19.9	7.9	8.0	11.0	11.2	14.5	23.0	11.3
Loss on column	1	4.0	ı	1.7	1.9	2.9	4.1	1	1	1	ı	3.5	4.0	4.0	0.0
Asphaltenes (Total)**	64.4	46.8	55.3	55.7	59.5	57.1	54.8	56.5	56.3	58.7	61.4	59.4	47.5	5.4	12.0
Asphaltenes (Toluene sols)	28.1	23.4	20.1	19.9	21.4	23.5	19.4	19.3	17.9	23.4	30.3	25.7	21.3	4.9	4.1
Asphaltenes (THF sols)	5.0	7.2	7.4	8.5	1.7	5.9	5.9	6.5	9.0	6.1	8.5	11.6	7.8	0.5	0.5
THF-Insols	31.3	16.2	27.8	27.3	31.1	27.7	29.5	200	29.4	29.3	22.7	22.0	18.4	Q	7.5
Total Overall Loss or Gain	-0.1	+1.3	-0.7	-1.4	-1.9	-1.4	-3.2	-0.3	-3.4	-0.5	+1.2	+2.4	+0.2	-1.7	-0.3

* (Normalized to 100% recovery from column)

Samples used in SARA separations

Resid Sample Source	(All samples are composite resids with the exception of HTI POC-1, which is from one run period)	W258, V-131B	W261, V-131B	W261, V-1067	W261, R-1235	W262, R-1235	W262, V-131B	W262, V-1067	W260, V-1067	W260, R-1235	W260, V~131B	W259, V-1067	W259, R-1235	W259, V-131B	HTI POC-01, O-43	HTI POC-02, 0-43
RUN #		-	8	ಣ	4	40	•	7	€0	۵	9	=	5	5	4	10

HTI = Hydrocarbon Technologies inc.
W = Wilsonville
R-1235 = interstage stream
V-1067 = 2nd stage product stream
V-131B = recycle stream
O-43 = recycle stream
ND = none detected

ANALYSIS OF SOLID PORTION OF STBR REACTION PRODUCTS (UNIVERSITY OF DELAWARE SAMPLE SET) TABLE 3

	000000000000000000000000000000000000000									
Delaware Sample No.	C001 (S)	(s)zooo	CO04(S)	(s)9000	(s) LOOO	(s)8000	(s)6000	CO14(S)	CO15(S)	CO17(S)
Ultimate, wt%										
O	58.71	59.32	53.27	51.22	53.08	55,55	46.94	52.82	49.43	53.15
I	2.76	2.60	2.33	2.24	2.24	2,43	2.16	2.46	2.29	2.59
Z	1.08	1.11	1.01	0.99	1.04	0.91	0.85	0.84	0.86	0.94
တ	3.21	3.20	3.57	3.92	3.82	4.49	5.77	3.79	3.82	3.58
Ash	39.27	34.48	42.71	44.97	43.50	40.13	49.50	43.78	46.68	42.20
O (by difference)	-5.03	-0.71	-2.89	-3.34	-3.68	-3.51	-5.34	-3.69	-3.23	-2.46
Ash Elementals, wt% of ash										
MoO ₃	60'0	0.05	0.02	0.01	0.02	7.11	7.39	3.27	7.38	4.51
OIN	90'0	0.00	0.03	0.02	0.04	0.03	0.03	0.03	0.01	0.01
SiO,	24.70	26.63	24.17	24.24	24.29	21.93	21.55	24.48	21.88	23.00
Al ₂ O ₃	13.18	13.45	13.07	12.82	12.66	11.65	11.48	13.09	11.82	12.31
TiO,	0.95	76'0	0.95	0.93	0.92	0.84	0.85	0.95	0.87	0.91
Fe ₂ O ₃	21.99	21.95	21.04	20.82	20.82	19.45	18.91	21.67	19.86	19.81
CaO	14.25	14.47	14.28	14.26	13.92	12.42	12.95	12.55	12.83	13.37
MgO	3.41	3.42	3.40	3.37	3.32	2.73	2.98	2.75	3.03	3.16
Na ₂ O	1.84	1.84	1.88	1.79	1.83	1.54	1.59	1.63	1.65	1.74
қо	0,48	0.48	0.42	0.42	0.41	0.38	98:0	0.43	0.41	0.41
P ₂ O ₅	09'0	0.59	0.59	0.59	0.57	0.47	0.46	0.57	0.47	0.51
so³	16.40	15.00	19.34	19.62	19.99	18.16	19.88	17.90	16.47	18.25
MnO ₂	0.39	0.35	0.43	0.45	0.43	0.37	0.45	0.39	0.42	0.38
Unaccounted	1.66	0.79	0.38	99'0	0.78	2:92	1.10	0.29	2.90	1.63

TABLE 3 (Continued)

ANALYSIS OF SOLID PORTION OF STBR REACTION PRODUCTS (UNIVERSITY OF DELAWARE SAMPLE SET)

CONSOL Sample No.	356	357	358	359	360	361	362	363	364	365
Delaware Sample No.	COO18(S)	C0019(S)	CO20(S)	CO21(S)	CO22(S)	CO24(S)	CO25(S)	CO26(S)		CO28(S)
Ultimate, wt%										
0	49.73	51.64	49.43	51.96	47.53	42.68	20.22	15.67	18.82	16.46
Ι	2.30	2.41	2.18	2.18	1.94	1.81	1.15	1.01	1.05	0.89
Z	0.85	0.84	0.81	0.89	08.0	0.67	0.57	0.55	0.48	0.48
တ	5.44	5,19	5.44	5.13	5.42	6.19	6.28	6.21	5.89	6.08
Ash	45.93	44.47	47.24	45.12	49.94	54.34	69.82	74.77	73.37	76.31
O (by difference)	-4.35	-4.55	-5.22	-5.28	-5,75	-5.84	1.67	1.55	0.14	-0.38
Ash Elementals, wt% of ash										
MoO ₃	6.77	6.96	7.07	6.54	6.51	7.00	14.79	16.03	15.51	15.74
NiO	0.01	0.01	0.06	0.10	0.05	0.04	2.80	2.89	2.81	2.80
SiO ₂	21.98	21.74	21.51	20.95	21.02	21.56	2.64	1.63	2.29	2.22
Al ₂ O ₃	11.86	11.61	11.36	11.26	11.60	11.86	06'09	63.73	61.58	62.40
TiO ₂	0.86	0.87	0.85	0.83	0.84	0.86	0.17	0.14	0.17	0.15
Fe ₂ O ₃	19.73	19.13	20.09	21.08	19.05	19.32	2.83	1.62	2.21	2.04
CaO	12.22	12.32	12.52	12.90	12.41	12.82	1.62	1.07	1.46	1.35
MgO	2.84	2.97	2.96	2.89	3.07	3.14	0.37	0.24	0.34	0:30
Na ₂ O	1.67	1.68	1.64	1.61	1.63	1.67	0.25	0.16	0.24	0.21
K2O	0.39	0.39	0.38	0.40	0.40	0.40	90.0	0.05	0.05	0.04
P ₂ O ₅	0.46	0.46	0.44	0.43	0.48	0.48	6.94	7.26	7.05	7.15
so ₃	19.46	18.83	19.86	19.92	19.70	17.89	1.65	1.11	1.63	1.57
MnO ₂	0.41	0.40	0.42	0.40	0.44	0.49	90.08	0.05	0.05	0.07
Unaccounted	1.34	2.63	0.84	0.69	2.80	2.47	4.88	4.02	4.59	3.96

TABLE 3 (Continued)

ANALYSIS OF SOLID PORTION OF STBR REACTION PRODUCTS (UNIVERSITY OF DELAWARE SAMPLE SET)

CONSOL Sample No.	366	367	368	369	370	371	372	373	374
Delaware Sample No.	CO29(S)	CO30(S)	CO31(S)	CO32(S)	(s)£000	CO34(S)	CO35(S)	CO36(S)	co37(s)
Ultimate, wt%									
O	22.21	15.87	17.80	18.71	18.03	17.47	57.23	42.88	24.03
I	1.00	0.82	0.94	0.83	0.81	92.0	2.31	1.50	1.14
Z	0.51	0.42	0.44	0.45	0.41	0.44	1.06	0.71	0.58
Ø	5.51	6.29	6.07	5.98	5.84	5.76	3.20	4.34	5.86
Ash	71.56	76.73	74.78	74.99	75.62	76.00	38.71	55.94	67.71
O (by difference)	-1.00	-0.25	-0.15	-1.17	-0.90	29'0-	-2.51	-5.50	0.51
Ash Elementals, wt% of ash									
MoO ₃	13.54	14.73	14.46	13.49	13,50	13.51	0.01	0.01	13,53
NiO	2.35	2.83	2.75	2.51	2,55	2,55	0.01	0.01	2.61
SiO ₂	5.00	1.99	2.21	4.28	4.50	4.10	23.43	23.19	3,54
Al ₂ O ₃	56.15	62.24	61.30	56.74	57.53	57.82	12.77	12.48	58.70
TIO ₂	0.25	0.14	0.17	0.23	0.23	0.25	0.94	0.92	0.21
Fe ₂ O ₃	4.59	1.80	2.37	4.18	4.11	4.03	20.93	20.66	3.44
CaO	2.93	1.22	1.58	2.75	2.65	2.61	14.02	13.80	2.29
Мво	0.67	0.26	0.35	0.61	0.63	0.61	3.38	3.26	0.53
Na ₂ O	0.39	0.17	0.23	0.35	0.37	0.35	1.85	1.79	0.32
К ₂ О	0.10	0.04	0.05	0.08	90'0	90.0	0.42	0.45	0.08
P ₂ O ₅	6.73	7.26	7.02	6.36	6.37	6.43	0.59	0.59	6.62
so ₃	4.20	1.31	1.88	3.56	3,33	3.44	20.17	19.84	2.79
MnO ₂	0.15	90:0	0.08	0.14	0.14	0.14	0.38	0.55	0.11
Unaccounted	2.96	5.95	5.55	4.73	4.02	4.09	1.10	2,45	5.24

TABLE 4

CARBON STRUCTURAL PARAMETERS
DETERMINED BY ¹³C-NMR

Symbol	Fractions of sp ² -hybridized Carbon	Symbol	Fractions of sp ³ -hybridized Carbon
f _a	total carbon	f _{ai}	total carbon
f _{a'}	in an aromatic ring	f _{al} H	CH or CH ₂
f _a C	carbonyl	f _{al} *	CH ₃ or nonprotonated
f _a H	protonated and aromatic	fal	bonded to oxygen
f _a N	nonprotonated and aromatic		
f _a P	phenolic or phenolic ether		
f _a S	alkylated aromatic		
f _a B	aromatic bridgehead		

TABLE 5

AVERAGE MOLECULAR STRUCTURAL DESCRIPTORS (LATTICE PARAMETERS)

DETERMINED BY 13C-NMR

Symbol	Description	Symbol	Description
χ _b	mole fraction of condensed carbons;	B.L.	bridges and loops per cluster;
С	average aromatic cluster size	S.C.	side chains per cluster;
σ+1	number of attachments per cluster	MW	total molecular weight;
Po	fraction of intact bridges;	Μ _δ	average molecular weight per

APPENDIX 1

SAMPLE REQUEST FOR HTI RUN CMSL-11

August 4, 1995

CONSOL Inc.
Research & Development 4000 Brownsville Road Library, PA 15129-9566 412-854-6600 FAX: 412-854-6613 412-854-6748

Dr. V. Pradhan Hydrocarbon Technologies, Inc. P. O. Box 6047 New York and Puritan Avenues Lawrenceville, NJ 08648

Dear Vivek:

Our sample request for Run CMSL-11 is described below. We are requesting material in sufficient quantities to allow for sample distribution to other research groups, as needed. We understand that you cannot always provide the requested amounts, and we can work with smaller quantities.

We would like to receive from each CMSL-11 run condition: (1) 250 g of separator overhead (SOH) and 250 g of atmospheric still overhead (ASOH) or 250 g of SOH/ASOH blended in the correct product ratio; (2) 350 g of pressure-filter liquid (PFL); (3) 350 g of pressure-filter cake (PFC); (4) 350 g of continuous atmospheric still (CAS) bottoms; (5) 350 g of interstage sample (first-stage product); and (6) 250 g of feed slurry. Please also include: (7) 350 g of the start-up/make-up oil; (8) 250 g samples of SOH and ASOH liquids from any bypass periods of the in-line hydrotreater; (9) a fresh 300 g sample of the feed coal; and (10) a 300 g sample of each plastic feedstock.

We have not yet received Run CMSL-10 samples, or the three interstage samples we were expecting from Run CMSL-8. We would appreciate any of these samples that you can provide.

Let us know of any problem areas with this request. Thank you for your assistance.

Sincerely,

G. A. Robbins

Sr. Research Chemist

cc:

A. G. Comolli - HTI

M. A. Nowak - PETC

E. B. Klunder - PETC

F. P. Burke


R. A. Winschel

S. D. Brandes

APPENDIX 2

SAMPLE REQUEST FOR HTI RUN POCB-1

September 18, 1995

CONSOL Inc. Research & Development 4000 Brownsville Road Library, PA 15129-9566 412-854-6600 Fax. 412-854-6613 412-854-6748

Dr. V. Pradhan Hydrocarbon Technologies, Inc. P.O. Box 6047 New York and Puritan Avenues Lawrenceville, NJ 08648

Dear Vivek:

Our sample request for POC Bench Option Run $1_{_}$ is described below. requesting material in sufficient quantities to allow for sample distribution to other research groups, as needed. We understand that you cannot always provide the requested amounts, and we can work with smaller quantities.

We would like to receive from each run condition: (1) 250 g of separator overhead (SOH) and 250 g of atmospheric still overhead (ASOH) or 250 g of SOH/ASOH blended in the correct product ratio; (2) 350 g of pressure-filter liquid (PFL); (3) 350 g of pressure-filter cake (PFC); (4) 350 g of continuous atmospheric still (CAS) bottoms; (5) 350 g of interstage sample (first-stage product); and (6) 250 g of feed slurry. Please also include: (7) 350 g of the start-up/make-up oil; (8) 250 g samples of SOH and ASOH liquids from any bypass periods of the in-line hydrotreater; (9) a fresh 300 g sample of each of the coal and petroleum resid feeds; and (10) 1 kg of the plastic feed.

Let us know of any problem areas with this request. Thank you for your assistance.

Sincerely,

G. A. Robbins

Sr. Research Chemist

GAR:1s

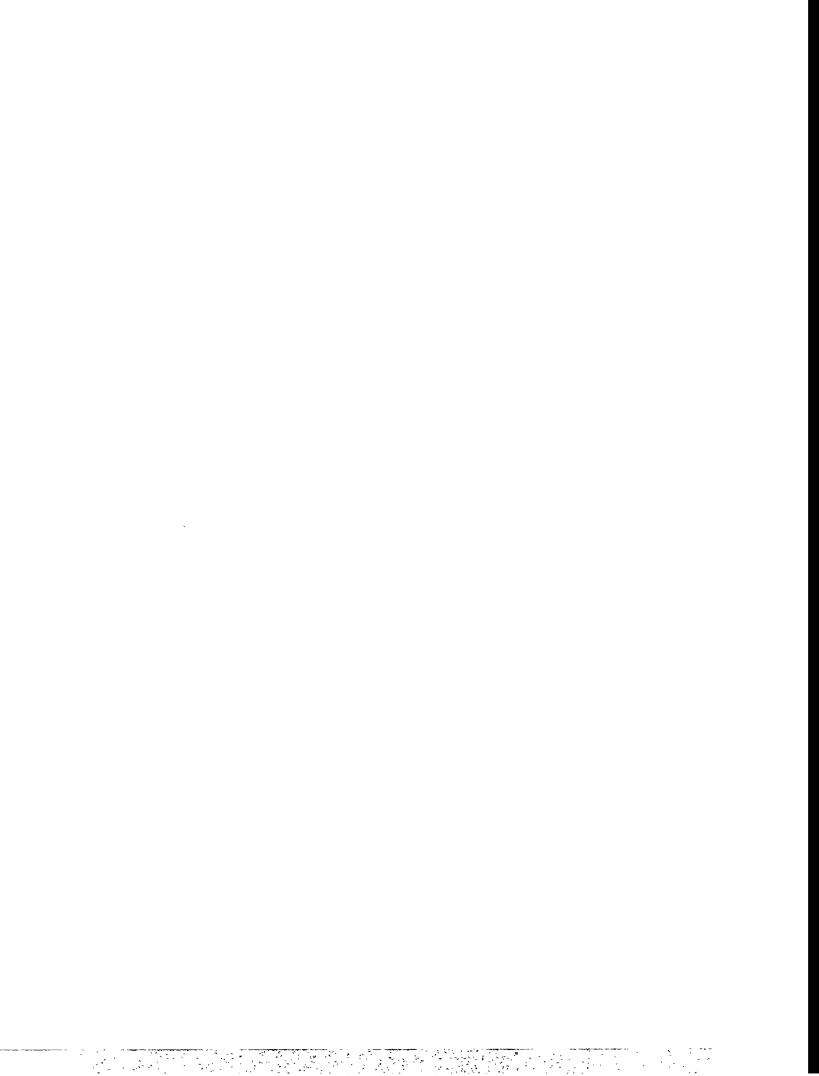
cc: A. G. Comolli - HTI

Si. C. Collinson


M. A. Nowak - PETC

E. B. Klunder - PETC

F. P. Burke


R. A. Winschel

S. D. Brandes

APPENDIX 3

INSPECTION OF NET PRODUCTS OF HTI RUN POC-1

Technical Service Report

Conaco Inc. Technology

Product Quality and Analytical Technology

Ponca City, Oklahoma 74602

Project No.

ANA-119-95

То

R. A. Winschel, Consol Inc.

From

Dale Cabbiness

Date

September 18, 1995

Subject

Light Oil Assay of C95028, Syn Products of CONSOL.

This sample was received March 31, 1995 for special light oil analysis. The samples were precessed outside of the CONOCO standard Assay Management Process because of the special cut points and testing on the fractions. All data were run using ASTM, UOP or other standard methodology. Summary data and clarification information are attached.

Dale Cabbiness

TSR119.95

CC: Library and Arron Dillard

Conoco Sample		r: C95	028	Consc	I Samp	le Num	ber: F	L2236	- POC	-1		
	Whole				<u> </u>					Cold	Still	Total
Test Required	Oil or	1	2	3	4	5	6	7	_ 8B	Trap	Wash	Yield
	Cursory	IBP-180	180-350	350-400	400-500	500-550	550-650	650+	1+2 Blend			
API Gravity	32.2		47.2	34.2		23.9	21.8	18.7	49.6			
Specific Gravity	0.8643	0.7245	0.7919	0.8542			0.9228	0.9420	0.7812	XX	****	
Aniline Point, °F					83	92	103	130				
Concarb, Wt%							**** ********************************	0.4				
Metals: ppm												<i></i>
Vanadium	<1	***************************************										
Nickel	<0.5											لنسببنسي
Iron	3.7											
Copper	<0.5											
Zinc	<1	***************************************										
Ash, Wt%	0.00		1 1 5	0.10	0.12							
RVP, psig		7.06	1.15	0.12	0.12	·····						
Smoke Point, mm Flash Point, °F				13.7 134	11.8							
						250		25			**************************************	
Pour Point, °F Freeze Point, °F	-60			<-55 <-60		-45	-5	35		·*************************************		
Basic Nitrogen, Wt %	-00)OL	0.051	0.037	0.033	0.058			**********	
Mercaptan Sulfur, Wt%				0.007	0.001	0.007	0.000	0.000				***************************************
Luminometer#				27.2	22.0					~~~		وسستنه
Paraffins, Vol% (GC)		31.68	16.98	6.57	0.94	0.39	0 i					<u>ئىنىسىنىن</u>
Naphthenes, Vol% (GC)		65.74		18.22	0.36	0.13	0			,	******	<u> </u>
Aromatics, Vol% (GC)		2.58	11.71		1.37	0.10	0					
Olefins, Vol% (FIA)			5		4							
Benzene, Vol%		2.58										
Naphthalenes, Vol%				1	2.6						<u></u>	***************************************
Pona		Data attac	hed:						•			
Thermal Stability				FAIL/4	FAIL / 4					***********		***************************************
Research Octane #		77.90	62.57	65.24								
Motor Octane #		74.42	60.15	62.83							***************************************	
Cetane Index				20.57	26.90	31.90	34.67					
Net Heat of Combustion				18120	18020				18250			
Acidity, mg KOH/g	0.12			0.01	<.01				0.02	**		
Copper Corrosion				1A	1A	1A			1A 🖔			
Existent Gum				16.8	9.4	7.6			14.8			
Oxidation Stability				OK-16hrs	OK-16hrs	OK-16hrs			OK-16hrs (
Total Carbon, Wt%	86.9		85.7	86.7	87.3		87.8	87.7				
Total Hydrogen, Wt%	12.59		13.66	12.64	12.13	11.9	11.86	11.6	<u> </u>			
Total Nitrogen, Wt%	0.058	0.006	0.023	0.059		0.055	0.053	0.13				
Total Oxygen, Wt%	0.2		0.3	0.4		0.1	0.1	0.2				
Total Sulfur, Wt%	0.049	0.011	0.049	0.036		0.022	0.018	0.061				
Kinematic Viscosity, -4 °F				4.35	10.71							
Kinematic Viscosity, 104 °				1.065	1.914	3.71	7.178					
Kinematic Viscosity, 210 °	*				0.81	1.3	1.975	3.686	**************************************		88888888888888888888888888888888888888	
Yield		4.50	00.77	0.40	04.00	45.54					**************************************	
Weight % Recovered		4.53	22.77	8.16	21.93	15.51	20.77	5.58		0.12	0.19	99.56
Volume % Recovered D86 Distillation, temp °F	or I	5.40		8.26			19.45	5.12		0.18	0.18	99.55
IBP		°F 102.0	°F	°F	°F	°F	°F		<u> </u>			
5 ML	132.6 196.8	121.4		348.4			454.8 553.4			-		
				368.2 369.1	430.0					****		
10 ML	232.7 291.9	134.9 141.4			424.0 434.0		567.8 577.9					
30 ML	353.8						579.9					
40 ML	407.6	146.8 151.3		371.4 372.9	438.0 441.0	518.9 518.5	581.9					
50 ML	451.7	155.4		374.7			584.4		******	·*··		
60 ML	491.9	159.2		376.8	449.0	520.1	587.4	?}}}		4		
70 ML	522.8	162.8		379.2			590.9	······································	~~~~	····		**********
80 ML	550.7	166.1		382.2			594.8			·******		
90 ML	582.4	170.0		386.7		535.6	604.5					***************************************
95 ML	605.3	173.8		390.3		541.4	617.5			*******		التقينستين
FINAL VOL.	636.0	195.6		400.8		555.2	628.6					
RECOVERY, Vol%	99.3	96.2	94.9	98.5		98.1	98.2					
				00.0			30.2 <u>8</u>	<u> </u>	::_::::::::::::::::::::::::::::::::::::	:xx	<u></u>	<u> </u>

Sample 8 was produced by combining cuts 1 and 2 in their yield ratios. Separation was performed using ASTM 2892, 18 plate column. All test were run using ASTM, UOP or equivalent Conoco Methods. Thermal Stability: failed tube rating of 4 (highest value)

FIA Test Data	Oil or	1	2	3	4	5	6	7	8 B	Trap	Wash Yield
Olefins, Vol%	! ************************************		5	3.8	4				W W & 4 4	l. 48	
Aromatics, Vol%			13	29.8	44	·	200000000000000000000000000000000000000	*********		v. 355/400000 000	£4
Paraffin + Naphthenes, Vo	196			66.4	52	1		>	3 8 8 9 9	× 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	88.1 1.180293794

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0808A\002F0201.D

Instrument : 1 Vial : 2
Operator : BECKY SHAVER Injection : 1
Acquired on : 08 Aug 95 02:05 PM Seq. line : 2

Processed on : 16 Aug 95 8:28 AM

Sample name : C95028-1 Methodname : MOD1011.MTH

Calculation of RON = 76.00

*** Remark : RON value is out of specified range. ***

Valid range is 94 < Ron < 103

REPORT IN WEIGHT %

=====	========		=========	=======
C-num	Naphtenes	Paraffins	Aromatics	Totals
=		==========		=======
3	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00
5	4.68	0.00	0.00	4.68
6	59.35	24.18	2.86	86.39
7	3.84	4.95	0.00	8.79
8	0.00	0.00	0.00	0.00
9	0.13	0.00	0.00	0.13
10	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00
==	========	========	========	=======
Totals	68.01	29.13	2.86	100.00

Total 100.00

REPORT IN VOLUME %

			-	
=====	=========	==========	==========	=======
C-num	Naphtenes	Paraffins	Aromatics	Totals
=	=========	============	.=========	
3	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00
5	4.63	0.00	0.00	4.63
6	57.28	26.47	2.58	86.33
7	3.70	5.21	0.00	8.92
8	0.00	0.00	0.00	0.00
9	0.13	0.00	0.00	0.13
10	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00

Totals 65.74 31.68 2.58 100.00

Total 100.00

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0808A\003F0301.D

Instrument : 1 Injection: : BECKY SHAVER Operator Seq. line : Acquired on : 08 Aug 95 03:20 PM

Sample name : 028-2

Methodname : MOD1011.MTH

Sequencename : C:\HPCHEM\1\SEQUENCE\P0808A.SEQ

Calculation of RON = 81.10

*** Remark : RON value is out of specified range. ***

Valid range is 94 < Ron < 103

REPORT IN WEIGHT %

	RE.	PORI IN WEIGH	=	=======
C-num	======== Naphtenes	Paraffins	Aromatics	Totals
3 4 5 6 7 8 9 10	0.00 0.00 0.00 5.24 19.45 16.92 15.24 7.51 0.56	0.00 0.00 0.00 0.41 3.93 4.23 3.50 2.61 1.14	0.00 0.00 0.00 0.14 2.46 3.56 6.19 0.00 0.00	0.00 0.00 0.00 5.78 25.84 24.71 24.94 10.13 1.70
= Totals	======== 64.93	15.83	12.35	93.10

6.90 PolyNaphthene _____ 100.00 Total

REPORT IN VOLUME %

	REI	PORT IN VOLUM	E 6	
c-num	Naphtenes	Paraffins	Aromatics	Totals
3 4 5 6 7 8 9 10 11	0.00 0.00 0.00 5.36 19.86 17.06 15.16 7.24 0.53	0.00 0.00 0.00 0.47 4.39 4.58 3.69 2.70	0.00 0.00 0.00 0.13 2.36 3.38 5.84 0.00	0.00 0.00 0.00 5.96 26.61 25.02 24.69 9.94 1.68
=		==========	:==========	======

Totals 65.21 16.98 11.71 93.90

PolyNaphthene 6.10
----Total 100.00

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0808A\004F0401.D

Vial Instrument : 1 Operator : BECKY SHAVER Injection: 1 Acquired on : 08 Aug 95 04:34 PM Seq. line: 4

Sample name : 028-3

Methodname : MOD1011.MTH

Sequencename : C:\HPCHEM\1\SEQUENCE\P0808A.SEQ

Calculation of RON = 100.20

REPORT IN WEIGHT %

==========			=======
Naphtenes	Paraffins	Aromatics	Totals
:========	=========	=========	=======
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00
0.13	0.00	0.00	0.13
0.00	0.00	0.00	0.00
0.51	0.00	9.31	9.83
6.65	0.43	17.37	24.45
10.47	5.62	4.20	20.29
========	=========	=========	=======
17.76	6.05	30.89	54.69
	0.00 0.00 0.00 0.13 0.00 0.51 6.65 10.47	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.51 0.00 6.65 0.43 10.47 5.62	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.51 0.00 9.31 6.65 0.43 17.37 10.47 5.62 4.20

20.09 >200 25.22 PolyNaphthene 100.00 Total

REPORT IN VOLUME %

=====	=======	=========	=========	=======
C-num	Naphtenes	Paraffins	Aromatics	Totals
=	========	=========	=========	=======
3	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00
7.	0.14	0.00	0.00	0.14
8	0.00	0.00	0.00	0.00
9	0.55	0.00	9.43	9.98
10	6.89	0.47	17.45	24.81
11	10.65	6.10	4.32	21.06
=	========	===========	=========	=======
Totals	18.22	6.57	31.19	55.99

>200	20.05
PolyNaphthene	23.96
Total	100.00

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0808A\005F0501.D

Instrument : 1 Via
Operator : BECKY SHAVER In
Acquired on : 08 Aug 95 05:49 PM Sec
Sample name : 028-4
Methodname : MOD1013.MTH
Sequencename : C:\HPCHEM\1\SEQUENCE\P0808A.SEQ Vial Instrument : 1 Injection: 1 Seq. line: 5

REPORT IN WEIGHT %

=====	========	========		=======
C-num	Naphtenes	Paraffins	Aromatics	Totals
=	========		=========	=======
3	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00
8	0.24	0.00	0.00	0.24
9	0.00	0.17	0.00	0.17
10	0.09	0.00	1.36	1.45
11	0.00	0.68	0.00	0.68
=	=========			=======
Totals	0 33	0.85	1.36	2.55

0.85 Totals 0.33

96.12 >200 1.34 PolyNaphthene

100.00 Total

:========	========		
Naphtenes	Paraffins	Aromatics	Totals
0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.20	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.26 0.20
0.10 0.00	0.00 0.74 =======	1.37 0.00 =========	1.47 0.74
	0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.20 0.10 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.20 0.00 0.10 0.00 1.37

Totals 0.36 0.94 1.37 2.67

96.05 >200 1.28 PolyNaphthene -----

Total 100.00

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0808A\006F0601.D

Vial : 6 Injection : 1 Seq. line : 6 Instrument : 1 Operator : BECKY SHAVER
Acquired on : 08 Aug 95 07:04 PM
Sample name : 028-5
Methodname : MOD1013.MTH

Sequencename : C:\HPCHEM\1\SEQUENCE\P0808A.SEQ

______ DEDODT IN WEIGHT %

	RE.	PORT IN MEIGE	II 6	
C-num	Naphtenes	Paraffins	Aromatics	Totals
3 4 5 6 7 8 9 10 11	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.09 0.13 0.27
= Totals	0.13	0.36	0.00	0.48

99.52 >200 _ _ _ _ _ _ 100.00 Total

______ REPORT IN VOLUME %

REPORT IN VOLUME .								
=======================================								
C-num	Naphtenes	Paraffins	Aromatics	Totals				
=		=========	=========	=======				
3	0.00	0.00	0.00	0.00				
4	0.00	0.00	0.00	0.00				
5	0.00	0.00	0.00	0.00				
6	0.00	0.00	0.00	0.00				
7	0.00	0.00	0.00	0.00				
8	0.00	0.00	0.00	0.00				
9	0.00	0.11	0.00	0.11				
10	0.13	0.00	0.00	0.13				
11	0.00	0.29	0.00	0.29				
=	=======	==========	:=========	=======				
Totals	0.13	0.39	0.00	0.53				

99.47 >200 _____ 100.00 Total

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0808A\007F0701.D

Instrument : 1 Vial Injection: 1 : BECKY SHAVER Operator Acquired on : 08 Aug 95 08:19 PM Seq. line:

11

Sample name : 028-6
Methodname : MOD1013.MTH

Sequencename : C:\HPCHEM\1\SEQUENCE\P0808A.SEQ

REPORT IN WEIGHT %

RELOIT IN RELOIT V									
C-num	Naphtenes	Paraffins	Aromatics	Totals					
==	========	=========							
3	0.00	0.00	0.00	0.00					
_	0.00	0.00	0.00	0.00					
4	0.00	0.00							
5	0.00	0.00	0.00	0.00					
6	0.00	0.00	0.00	0.00					
7	0.00	0.00	0.00	0.00					
,			-	0 00					
8	0.00	0.00	0.00	0.00					
9	0.00	0.00	0.00	0.00					
10	0.00	0.00	0.00	0.00					
T 0	0.00	0.00							

0.00 0.00 0.00 Totals 0.00

0.00

0.00

100.00 >200 _____

0.00

100.00 Total

S EINTLANT TAT MOOGED

REPORT IN VOLUME %								
C-num	Naphtenes	Paraffins	Aromatics	Totals				
= 3 4 5 6 7 8 9 10	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00				
Totals	========	0.00	0.00	0.00				

100.00 >200 _____

100.00 Total

Analysis Report

Date September 6, 1995

To D

D. K. Cabbiness

From A

A.W. Buchholz Jr., CCAS, PCL

Phone

DuCom 442-5708

Subject (Sample Description)

Heat of Combustion Data

Unalysis Codes G-BTU, N-BTU	Sample Numbers	Analytical Numbers	Reference Numbers
Charge Number 7003-0000-T002	c95028-3 c95028-4	7391	AWB A400-60
Method LECO oxygen bomb calorimetry	c95029-3 c95029-4 c95029-8		
Reviewed by: A.W. Buchholz Jr.	C95029-8A		

The samples were combusted using a LECO AC-300 oxygen bomb calorimeter which was calibrated using benzoic acid. No combustion aids were needed for the analyses. The condensed combustion products were rinsed from the combustion vessel and titrated for acid formation. Only a small amount of acid was titrated which was probably formed from the nitrogen in the air trapped inside the bomb. A small correction was made for the formation of nitric acid. Corrections for the combustion of the fuse wire were also made.

Water originally in the sample and the water formed in the combusiton reaction are both assumed to vaporize and then condense during the analysis releasing the heat of water vaporization back to the system. The gross heats of combustion or high heating values reported here include the heat released during condensation of the water vapor. The net heat of combustion or low heating values account for the loss of the water heat of vaporization. The net values more closely approximate the heat available to a boiler when a fuel is burned where the water vapor escapes through a flue and the heat of vaporization is not recovered.

Thanks.

A.W. Buchholz Jr.

Sr. Research Chemist

Page 1 of 2

GROSS AND NET HEATS OF COMBUSTION VALUES

SAMPLE NO.	GROSS HEAT OF COMBUSTION G-BTU (BTU/LB)	AVERAGE G-BTU (BTU/LB)	NET HEAT OF COMBUSTION N-BTU (BTU/LB)	AVERAGE N-BTU (BTU/LB)
c95028-3	19,280	19,280	18,130	18,120
	19,270		18,120	
c95028-4	19,130	19,130	18,020	18,020
	19,120		18,020	
c95028-8	19,510	19,510	18,250	18,250
	19,500		18,240	
c95029-3	19,570	19,550	18,370	18,350
	19,540		18,340	
c95029-4	19,380	19,380	18,220	18,220
	19,390		18,230	
c95029-8B	19,700	19,690	18,410	18,400
	19,670		18,380	

Page 2 of 2

This report shall not be reproduced except in full, without the written consent of the laboratory. The results reported here relate only to the samples received and analyzed by this laboratory.

Fuel Octane Testing

January 27, 1995 Kok-6-95

Dale K. Cabbiness
Director, Analytical Services Section
Conogo, Inc.
1000 S. Pine
Ponca City, OK 74603

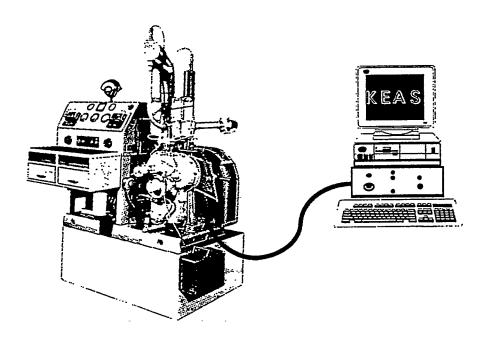
Dear Dale:

You had asked for a brochure or report concerning Phillips' capability for determining octane number by engine testing using small quantities of fuel. Attached is a description of our Knock Engine Automation System (KEAS) technology that makes it possible to use smaller quantities of fuel, and that also improves the quality of test data.

If you have additional technical questions you can direct them to Vance Kopp at (918) 661-9476. We are considering licensing the KEAS technology. If you would like to know more about this option, please contact Delmar Johnson at (918) 661-0620.

Cordially yours,

Fritz C. Kokesh


Director, Technology Acquisition

Attachment

Phillips Corporate Technology Phillips Petroleum Company 130 RF PRC Bartlesville, OK 74004

918-661-3407 918-661-7353 (fax)

図nock Engine Automation 多ystem 双三AS

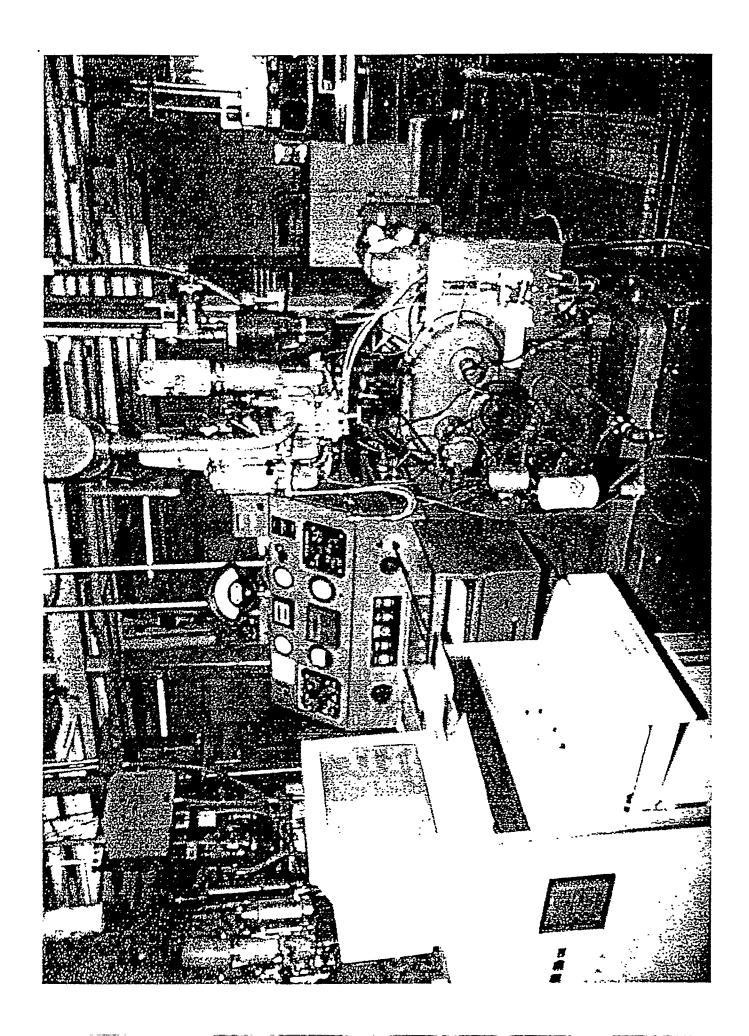
Ver 2.1

RESEARCH AND DEVELOPMENT

Knock Engine Automation System Summary

The KEAS system was developed in the 1980's. It was used initially to determine octane on small quantity samples. The KEAS system utilizes a 80486 IBM AT compatible computer with data acquisition hardware and software. The result is a PC-based control system for the knock engine. The software allows the operator to access the data acquisition capabilities of the computer through user-friendly graphical interfaces. On-line help is available throughout the program. Training of knock engine operators is dramatically simplified and reduced when utilizing this system. This allows refinery operations or other personnel to operate the engines, if necessary. In addition, the KEAS system is easily interfaced to laboratory information systems or local area networks, which facilitates the electronic transfer of data to refinery personnel or databases.

The KEAS system requires about 6 minutes to complete an octane test. It will run two octanes in 8 minutes and duplicates on two samples in 15 minutes. A single determination using standard ASTM procedure takes approximately 30 minutes. The repeatability of this test method should meet or exceed that of the standard ASTM method. The reproducibility of this method is currently under investigation.


The KEAS system is designed to allow the operator to select the mode of operation. It can be used in a fully automatic configuration or the KEAS system can be bypassed and the engine will operate in the standard mode as specified by the test method. The system also allows the operator to monitor critical engine parameters during the test and notifies the operator of an unusual condition.

If you would like further information or a demonstration of the system, please contact your Phillips representative.

Knock Engine Automation System KEAS

- 50 ml Sample Volume
- Reduced sample turnaround
- Increased sampling frequency
- Interfaces with existing engines and LIMS

Test methods user for Assay:

Conoco Sample Number: C95028 Consol Sample Number: FL2236 - POC-1
Conoco Sample Number: C95029 Consol Sample Number: FL2364 - POC-2

Conoco Sample I	diliber. C33023
Test Required	Method used:
restricquired	Michigan Company
API Gravity	ASTM D 4052
Specific Gravity	ASTM D 4052
Aniline Point, °F	ASTM D 611
Concarb, Wt%	ASTM D 4530
	7.07.11.0
Vanadium	Ash and ICP
Nickel	Ash and ICP
Iron	Ash and ICP
Copper	Ash and ICP
Zinc	Ash and ICP
Ash, Wt%	ASTM D 482
RVP	ASTM D 323
Smoke Point, °F	ASTM D 1322
Flash Point °F	ASTM D 56 and D 93
Flash Point, °F Pour Point, °F	ASTM D 97
Freeze Point, *F	ASTM D 2386
Basic Nitrogen, Wt %	UOP 269 - 90
Mercaptan Sulfur, Wt%	UOP 163-59 / ASTM D 3227
Luminometer #	ASTM D 1740
Paraffins, Vol%	Analytical Controls Method
Naphthenes, Vol%	Analytical Controls Method
Aromatics, Vol%	Analytical Controls Method
Olefins, Vol%	ASTM D1319
Benzene, Vol%	Analytical Controls Method
Naphthalene, Wt%	ASTM D 1840
Pona	Analytical Controls Method
Thermal Stability	ASTM D 3241
Research Octane #	Phillips Technology Services, KEAS
Motor Octane #	Phillips Technology Services, KEAS
Cetane Index	ASTM D 976
Net Heat of Combustion	ASTM D 4529
Acidity, mg KOH/g	ASTM D 974
Copper Corrosion	ASTM D 130
Existent Gum	ASTM D 381
Oxidation Stability	ASTM D 525
Total Carbon, Wt%	Combustion using Leco CHNS - 932
Total Hydrogen, Wt%	Combustion using Leco CHNS - 932
Total Nitrogen, Wt%	ASTM D 4629
Total Oxygen, Wt%	Combustion using Leco RO - 478
Total Sulfur, Wt%	ASTM 4294
Kinematic Viscosity, -4 °F	ASTM D 445
Kinematic Viscosity, 104°	ASTM D 445
Kinematic Viscosity, 210°	ASTM D 445
Yield	ASTM D 2892
Weight % Recovered	ASTM D 2892
Volume % Recovered	ASTM D 2892
D86 Distillation, temp °F	ASTM D 86

APPENDIX 4

INSPECTION OF NET PRODUCTS OF HTI RUN POC-2

Technical Service Report

Conoco Inc. Technology

Product Quality and Analytical Technology

Ponca City, Oklahoma 74602

Project No.

ANA-120-95

To

R. A. Winschel, Consol Inc.

From

Dale Cabbiness

Date

September 18, 1995

Subject

Light Oil Assay of C95029, Syn Products of CONSOL.

This sample was received March 31, 1995 for special light oil analysis. The samples were precessed outside of the CONOCO standard Assay Management Process because of the special cut points and testing on the fractions. All data were run using ASTM, UOP or other standard methodology. Summary data and clarification information are attached.

Dale Cabbiness

TSR120.95

CC: Library and Arron Dillard

Conoco Sample Number: C95029 Consol Sample Number: FL2364 - POC-2

Conoco Sample		er: Cy:	5029	Conso	ı Samp	ie num	iber: Fi	LZ304	- 200			
	Whole									Cold	Still	Total
Test Required	Oil or	1	2	3	4	5	6		8 B	Тгар	Wash	Yield
	Cursory	(BP-180	180-350	350-400	400-500	500-550		650+	1-2 Blend			
API Gravity	33.7	62.0			29.9	25.0		20.4				
Specific Gravity	0.8567	0.7314	0.7826	0.8435	0.8765	0.9040		0.9314	0.7742		البنيناسين	
Aniline Point, °F					105	111	128	130				
Concarb, Wt%								0.04				
Metals: ppm												
Vanadium	<1											
Nickel	<0.5											
Iron	<0.5							~~~~				
Copper	<0.5								•••••			
Zinc	<1					*********						
Ash, Wt%	0.00	E 77	1.06	0.07	0.15					********		H
RVP, psig		5.77	1.00	17.7	11.7							*******
Smoke Point, mm				130	180	240						
Flash Point, °F				<-60				55				
Pour Point, °F	40.0			1			-3		•••••			
Freeze Point, °F	-10.8			<-60	0.009	0.006	0.003	0.003		****		
Basic Nitrogen, Wt %				- 004			0.003	0.003				
Mercaptan Sulfur, Wt%				<.001	<.001 21.8							
Luminometer # Paraffins, Vol% (GC)		20.00	40.00	38.0	21.8 0.26	^	0			-		****
		29.29	18.69	8.24		0						
Naphthenes, Vol% (GC)	!	69.08	66.81	20.41	0.59	0						
Aromatics, Vol% (GC)		1.63	8.2	21.19	0.79	0	l U					
Olefins, Vol% (FIA)			<1	1	7							
Benzene, Vol%		1.7			0.50							
Naphthalenes, Vol%				0.11	0.56		·····					
Pona		Data attac	nea:		**************************************							
Thermal Stability					Too Foam	Y						
Research Octane #		76.63								<u></u>		
Motor Octane #		74.06	56.23				254					
Cetane Index				21.8		32.4	35.1		40400		ښسښي	
Net Heat of Combustion	<u> </u>			18350	18220				18400			
Acidity, mg KOH/g	<.01			0.011					0.004			<u></u>
Copper Corrosion				1A		1A			1A	<u> </u>		
Existent Gum				1.2	3.6				3.6			
Oxidation Stability				OK-16hrs					OK-16hrs	.		
Total Carbon, Wt%	86.85		85.7	86.6		87.4		87.6				
Total Hydrogen, Wt%	13.08		14.1	13.16		12.38		12.18				
Total Nitrogen, Wt%	0.006	<.001				0.008		0.013			************	
Total Oxygen, Wt%	<.1		<.1					<.1				
Total Sulfur, Wt%	0.008	0.001	0.001	0.003		0.003	0.001	0.009				
Kinematic Viscosity, -4 °F				4.12					*********			
Kinematic Viscosity, 104				1.07		3.79						
Kinematic Viscosity, 210 '	Ŧ				0.754	1.35	2.08	3.52			********	<i>.</i>
Yield							MANA 27 7				<u> </u>	
Weight % Recovered		4.51	24.79					3.88		0.07	0.17	
Volume % Recovered		5.28	27.14					3.57		0.10	0.16	99.85
D86 Distillation, temp °F		°F	°F	°F	°F	°F	°F					
IBP			169.7			507.5				,		
5 ML		144.1	228.5			510.9	·					
10 ML		147.3				511.1						
20 ML		149.9										
30 ML		154.5	246.0			510.0						
40 ML		157.4				511.7						
50 ML		160.1				511.8						
60 ML	489.7	162.8	276.8	368.7		511.8		***				/////////////////////////////////////
70 ML		165.3	290.4	371.4	456	512.6		· · · · · · · · · · · · · · · · · · ·				
80 ML		168.0	304.1			517.6						
90 ML		172.0		379.2	469	522.1						
95 ML		175.6				528.2						
FINAL VOL.		198.3		393.9	490	535.8	626.9					
RECOVERY, Vol%						98.2	99.0					
												

Sample 8 was produced by combining cuts 1 and 2 in their yield ratios. Separation was performed using ASTM 2892, 18 plate column. All test were run using ASTM, UOP or equivalent Conoco Methods. Thermal Stability: failed tube rating of 4 (highest value)

FIA Test Data	Oil or	1	2	3	4	5	6	7	8 B	Trap	Wash	Yield
Olefins, Vol%		kee: 0.0000000000000000000000000000000000	<1	1;	1							
Aromatics, Vol%	2000000000000011 200		. 61	18	29			<u> </u>				888 ST
Paraffin + Naphthenes,	A O 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		94	81	70	1		97:339 <i>3</i> 33,9 8 3	(Massa) :	900au 1770	3 000.00 ".	######################################

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0721A\002F0201.D

Instrument : 1 Vial : 2
Operator : Becky Shaver Injection : 1
Acquired on : 21 Jul 95 11:12 AM Seq. line : 2

Processed on : 25 Jul 95 2:40 PM

Sample name : C95029-1 Methodname : MOD1011.MTH

Calculation of RON = 75.70

*** Remark : RON value is out of specified range. *** Valid range is 94 < Ron < 103

_______ _______

REPORT IN WEIGHT %

======	========	=========	=========	=======
C-num	Naphtenes	Paraffins	Aromatics	Totals
=	=========	========	=========	=======
3	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00
5	4.04	0.00	0.00	4.04
6	62.78	22.08	1.68	86.53
7	4.49	4.81	0.13	9.42
8	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00
=	.=========	=========	=========	=======
Totals	71.31	26.88	1.80	100.00

100.00 Total

_______ REPORT IN VOLUME %

C-num Naphtenes Paraffins Aromatics Totals 0.00 0.00

0.00 0.00 0.00 1.52 0.11 0.00 0.00 0.00 0.00 4.01 0.00 60.73 24.22 4.34 5.07 4 0.00 5 4.01 6 60.73 7 4.34 8 0.00 4.01 86.47
 4.34
 5.07
 0.11

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00
 9.52 0.00 0.00 9 0.00 10

Totals 69.08 29.29 1.63 100.00

_ _ _ _ _ _ 100.00

Total

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0721A\003F0301.D

Instrument : 1 Vial : 3
Operator : Becky Shaver Injection : 1
Acquired on : 21 Jul 95 12:27 PM Seq. line : 3

Sample name : 029-2

Methodname : MOD1011.MTH

Sequencename : C:\HPCHEM\1\SEQUENCE\P0721A.SEQ

Calculation of RON = 79.90

*** Remark : RON value is out of specified range. *** Valid range is 94 < Ron < 103

PEDORT IN WEIGHT %

	RE.	DOKI IN MEIGH	1 %	
	=========	========	=========	=======
C 2112	Naphtenes	Paraffins	Aromatics	Totals
C-num	Napirceires			========
==	========	=======	0.00	0.00
3	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00
	• • • •	0.52	0.09	6.90
6	6.29		=	25.95
7	19.70	4.42	1.83	
8	18.33	5.07	2.66	26.06
-		4.17	4.11	23.05
9	14.77			10.48
1.0	7.54	2.94	0.00	
11	0.10	0.31	0.00	0.41
1 1.	0.10			=======
=	=========	=======	0.60	92 85

Totals 66.74 17.44 8.68 92.85

PolyNaphthene 7.15
---Total 100.00

REPORT IN VOLUME &								
c-num	Naphtenes	======== Paraffins 	Aromatics	Totals				
3 4 5 6 7 8 9 10 11	0.00 0.00 0.00 6.40 20.04 18.41 14.63 7.24 0.09	0.00 0.00 0.00 0.60 4.91 5.46 4.38 3.02 0.32	0.00 0.00 0.00 0.09 1.74 2.51 3.85 0.00	0.00 0.00 7.09 26.70 26.38 22.86 10.26 0.41				
=	=========	===========	=======					

Totals 66.81 18.69 8.20 93.70

PolyNaphthene 6.30

Total 100.00

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0721A\004F0401.D

Instrument : 1 Operator : Becky Shaver
Acquired on : 21 Jul 95 01:41 PM
Sample name : 029-3
Methodname : MOD1011.MTH Injection : 1
Seq. line : 4

Sequencename : C:\HPCHEM\1\SEQUENCE\P0721A.SEQ

Calculation of RON = 99.00

REPORT IN WEIGHT %

THE OILE THE CHIEF OF								
=====	========	=========		========				
C-num	Naphtenes	Paraffins	Aromatics	Totals				
_	========	========	===========	=======				
3	0.00	0.00	0.00	0.00				
4	0.00	0.00	0.00	0.00				
5	0.00	0.00	0.00	0.00				
6	0.00	0.00	0.00	0.00				
7	0.00	0.00	0.00	0.00				
8	0.00	0.00	0.00	0.00				
9	0.95	0.00	6.21	7.15				
10	8.21	0.89	11.95	21.05				
10	10.67	6.67	2.79	20.14				
11	10.07			========				

Totals 19.83 7.56 20.95 48.34

21.06 >200 30.59 PolyNaphthene _____ 100.00 Total

REPORT IN VOLUME %

REPORT IN VOLUME &					
=======================================					
C-num	Naphtenes	Paraffins	Aromatics	Totals	
			=========	=======	
3	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	
6	0.00	0.00	0.00	0.00	
7	0.00	0.00	0.00	0.00	
8	0.00	0.00	0.00	0.00	
9	1.01	0.00	6.29	7.31	
10	8.52	0.99	12.02	21.53	
11	10.88	7.25	2.87	21.00	
Totals	20.41	8.24	21.19	49.83	

>200		21.05
PolyNaphthene		29.12
	•	
Total		100.00

.

.

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0721A\005F0501.D

Operator : Becky Shaver
Acquired on : 21 Jul 95 02:56 PM
Sample name : 029-4
Methodname : MOD1013.MTH
Sequencename : Callinguage Injection: 1 Seq. line: 5

Sequencename : C:\HPCHEM\1\SEQUENCE\P0721A.SEQ

REPORT IN WEIGHT %

=====	######################################				
C-num	Naphtenes	Paraffins	Aromatics	Totals	
		==========		=======	
3	0.00	0.00	0.00	0.00	
_	0.00	0.00	0.00	0.00	
4	- · ·		0.00	0.00	
5	0.00	0.00	*		
6	0.00	0.00	0.00	0.00	
7	0.00	0.00	0.00	0.00	
8	0.00	0.00	0.00	0.00	
9	0.00	0.00	0.00	0.00	
1.0	0.06	0.00	0.78	0.84	
		0.24	0.00	0.76	
11	0.52	0.24	0.00		
=======================================					
Totals	0.58	0.24	0.78	1.60	

96.52 >200 PolyNaphthene 1.88 100.00 Total

REPORT IN VOLUME %

			=========	======
C-num	Naphtenes	Paraffins	Aromatics	Totals
	- <u>-</u>		==========	=======
3	0.00	0.00	0.00 0.00	0.00
4	0.00	0.00	• • • •	
5	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00
10	0.06	0.00	0.79	0.85
11	0.54	0.26	0.00	0.79
_		==========	:========	:======
- 1 -	. 0 50	0.26	0.79	1.65

Totals 0.59 0.26 0.79

96.56 >200 1.80 PolyNaphthene

100.00 Total

PIONA

Data File Name: C:\HPCHEM\1\DATA\P0721A\006F0601.D

Vial Instrument : 1 Operator : Becky Shaver
Acquired on : 21 Jul 95 04:11 PM
Sample name : 029-5
Methodname : MOD1013.MTH Injection: 1 Seq. line: 6

Sequencename : C:\HPCHEM\1\SEQUENCE\P0721A.SEQ

REPORT IN WE	:IGHT %	i
--------------	---------	---

	=	=========	=========	=======	
C-num	Naphtenes	Paraffins	Aromatics	Totals	
		=========	=========	=======	
3	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	
6	0.00	0.00	0.00	0.00	
7	0.00	0.00	0.00	0.00	
8	0.00	0.00	0.00	0.00	
9	0.00	0.00	0.00	0.00	
10	0.00	0.00	0.00	0.00	
11	0.00	0.00	0.00	0.00	
Totals	0.00	0.00	0.00	0.00	

100.00 >200 100.00 Total

REPORT IN VOLUME %

	=========	==========	=========	=======
C-num	Naphtenes	Paraffins	Aromatics	Totals
=	========		==========	=======
3	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00
	========	==========	=========	=======
Totals	0.00	0.00	0.00	0.00

100.00 >200 -----100.00 Total

PIONA

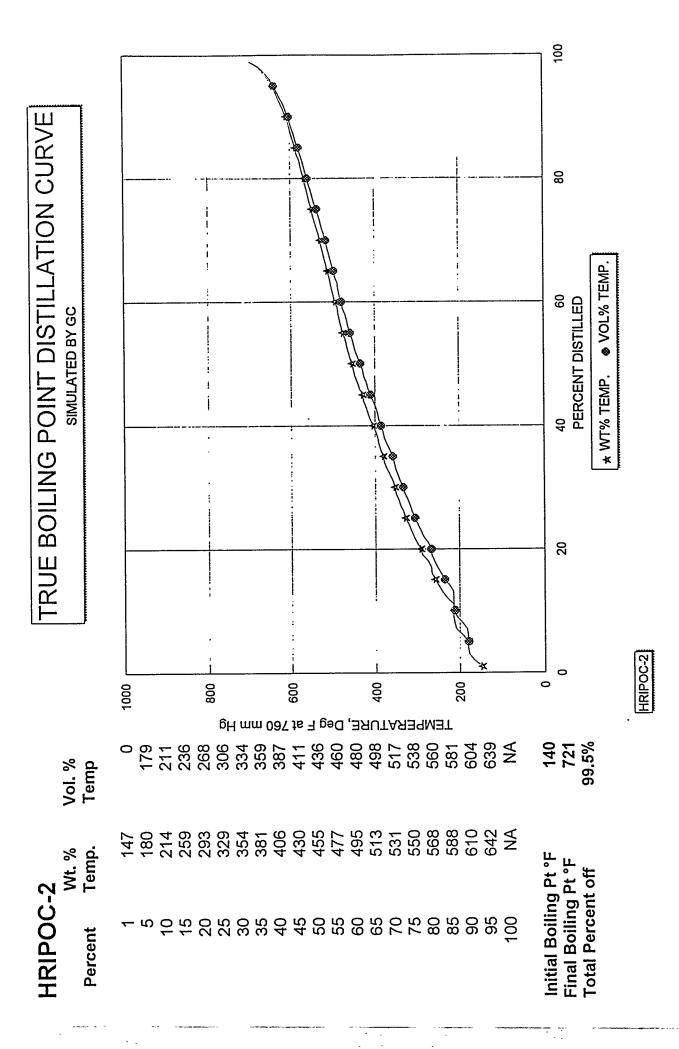
Data File Name: C:\HPCHEM\1\DATA\P0721A\007F0701.D

Vial Instrument : 1 Operator : Becky Shaver
Acquired on : 21 Jul 95 05:25 PM
Sample name : 029-6 1 Injection : Seq. line :

Methodname : MOD1013.MTH

Sequencename : C:\HPCHEM\1\SEQUENCE\P0721A.SEQ

REPORT IN WEIGHT %


	=======	==========	==========	=======	
C-num	Naphtenes	Paraffins	Aromatics	Totals	
-	=======	=========	=========	=======	
3	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	
6	0.00	0.00	0.00	0.00	
7	0.00	0.00	0.00	0.00	
8	0.00	0.00	0.00	0.00	
9	0.00	0.00	0.00	0.00	
10	0.00	0.00	0.00	0.00	
11	0.00	0.00	0.00	0.00	
Totals	0.00	0.00	0.00	0.00	

100.00 >200 100.00 Total

REPORT IN VOLUME %

KELOKI III AOTOLIE A				
====== C-num	======== Naphtenes	Paraffins	Aromatics	Totals
3 4 5 6 7 8 9 10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
= Totals	0.00	0.00	0.00	0.00

100.00 >200 _____ 100.00 Total

Analysis Report

Date September 6, 1995

To 0. K. Cabbiness

From A.W. Buchholz Jr., CCAS, PCL

Phone DuCom 442-5708

Subject (Sample Description)

Heat of Combustion Data

Analysis Codes	Sample	Analytical	Reference	
G-BTU, N-BTU	Numbers	Numbers	Numbers	
Charge Number 7003-0000-T002 Method LECO oxygen bomb calorimetry Reviewed by: A.W. Buchholz Jr.	c95028-3 c95028-4 c95029-3 c95029-4 c95029-8 c95029-8A	7391	AWB A400-60	

The samples were combusted using a LECO AC-300 oxygen bomb calorimeter which was calibrated using benzoic acid. No combustion aids were needed for the analyses. The condensed combustion products were rinsed from the combustion vessel and titrated for acid formation. Only a small amount of acid was titrated which was probably formed from the nitrogen in the air trapped inside the bomb. A small correction was made for the formation of nitric acid. Corrections for the combustion of the fuse wire were also made.

Water originally in the sample and the water formed in the combusiton reaction are both assumed to vaporize and then condense during the analysis releasing the heat of water vaporization back to the system. The gross heats of combustion or high heating values reported here include the heat released during condensation of the water vapor. The net heat of combustion or low heating values account for the loss of the water heat of vaporization. The net values more closely approximate the heat available to a boiler when a fuel is burned where the water vapor escapes through a flue and the heat of vaporization is not recovered.

Thanks.

A.W. Buchholz Jr.

Sr. Research Chemist

GROSS AND NET HEATS OF COMBUSTION VALUES

SAMPLE NO.	GROSS HEAT OF COMBUSTION G-BTU (BTU/LB)	AVERAGE G-BTU (BTU/LB)	NET HEAT OF COMBUSTION N-BTU (BTU/LB)	AVERAGE 'N-BTU (BTU/LB)
c95028-3	19,280	19,280	18,130	18,120
	19,270		18,120	
c95028-4	19,130	19,130	18,020	18,020
	19,120		18,020	
c95028-8	19,510	19,510	18,250	18,250
	19,500		18,240	
c95029-3	19,570	19,550	18,370	18,350
	19,540		18,340	
c95029-4	19,380	19,380	18,220	18,220
	19,390		18,230	
c95029-8B	19,700	19,690	18,410	18,400
	19,670		18,380	

Page 2 of 2

This report shall not be reproduced except in full, without the written consent of the laboratory. The results reported here relate only to the samples received and analyzed by this laboratory.

Fuel Octane Testing

January 27, 1995 Kok-6-95

Dale K. Cabbiness Director, Analytical Services Section Conoco, Inc. 1000 S. Pine Ponca City, OK 74603

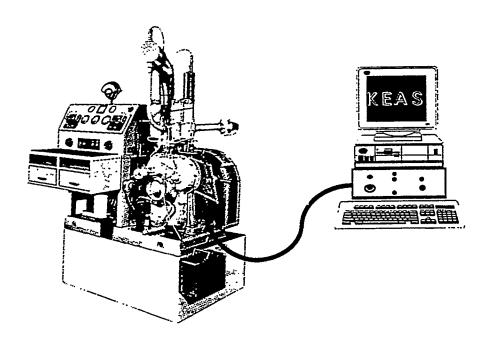
Dear Dale:

You had asked for a brochure or report concerning Phillips' capability for determining octane number by engine testing using small quantities of fuel. Attached is a description of our Knock Engine Automation System (KEAS) technology that makes it possible to use smaller quantities of fuel, and that also improves the quality of test data.

If you have additional technical questions you can direct them to Vance Kopp at (918) 661-9476. We are considering licensing the KEAS technology. If you would like to know more about this option, please contact Delmar Johnson at (918) 661-0620.

Cordially yours,

Fritz C. Kokesh


Director, Technology Acquisition

Attachment

Phillips Corporate Technology Phillips Petroleum Company 130 RF PRC Bartlesville, OK 74004

918-661-3407 918-661-7353 (fax)

Inock Engine Automation System XEAS

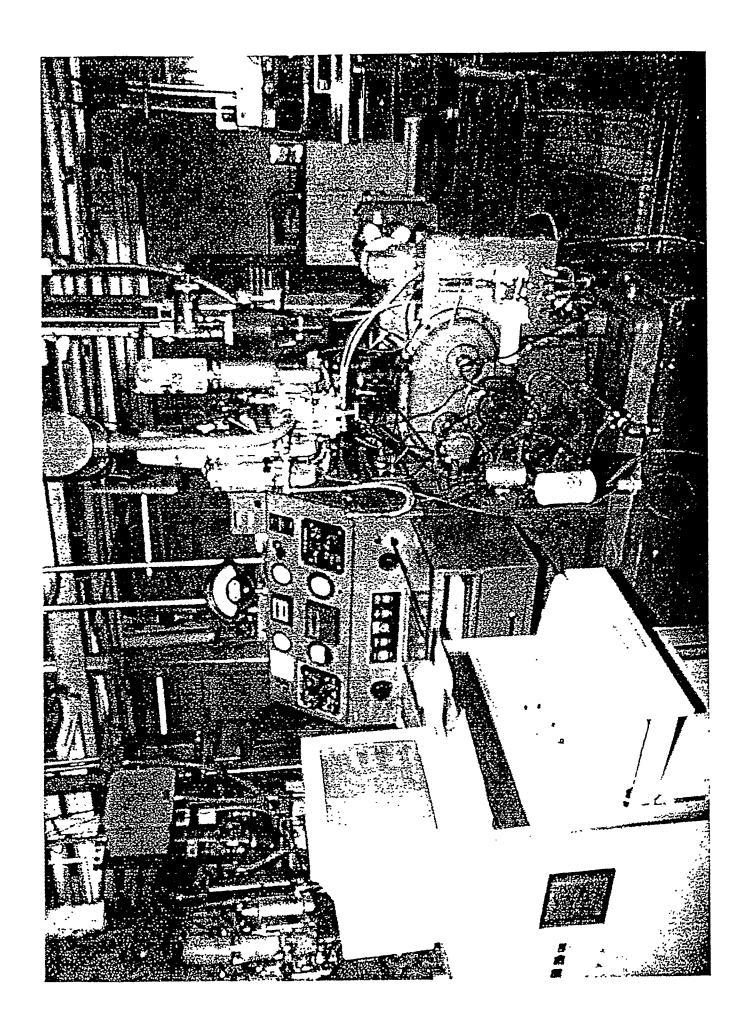
Ver 2.1

RESEARCH AND DEVELOPMENT

Knock Engine Automation System Summary

The KEAS system was developed in the 1980's. It was used initially to determine octane on small quantity samples. The KEAS system utilizes a 80486 IBM AT compatible computer with data acquisition hardware and software. The result is a PC-based control system for the knock engine. The software allows the operator to access the data acquisition capabilities of the computer through user-friendly graphical interfaces. On-line help is available throughout the program. Training of knock engine operators is dramatically simplified and reduced when utilizing this system. This allows refinery operations or other personnel to operate the engines, if necessary. In addition, the KEAS system is easily interfaced to laboratory information systems or local area networks, which facilitates the electronic transfer of data to refinery personnel or databases.

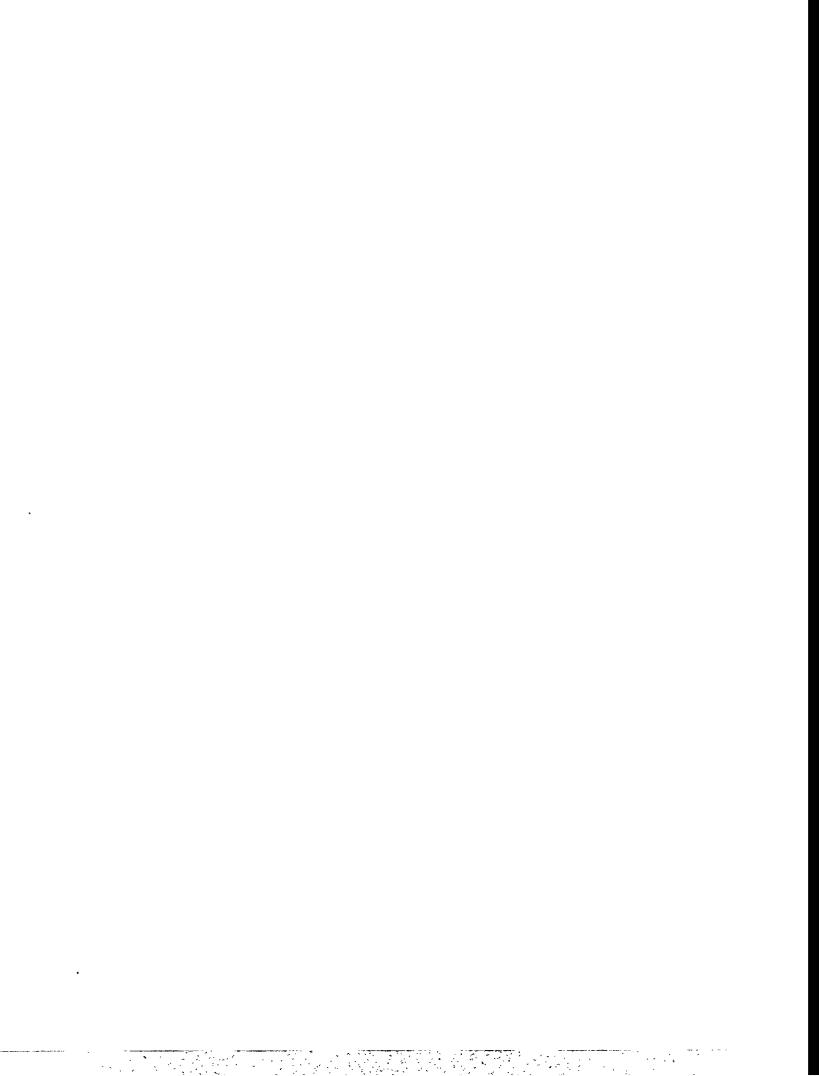
The KEAS system requires about 6 minutes to complete an octane test. It will run two octanes in 8 minutes and duplicates on two samples in 15 minutes. A single determination using standard ASTM procedure takes approximately 30 minutes. The repeatability of this test method should meet or exceed that of the standard ASTM method. The reproducibility of this method is currently under investigation.


The KEAS system is designed to allow the operator to select the mode of operation. It can be used in a fully automatic configuration or the KEAS system can be bypassed and the engine will operate in the standard mode as specified by the test method. The system also allows the operator to monitor critical engine parameters during the test and notifies the operator of an unusual condition.

If you would like further information or a demonstration of the system, please contact your Phillips representative.

Knock Engine Automation System KEAS

- 50 ml Sample Volume
- Reduced sample turnaround.
- Increased sampling frequency
- Interfaces with existing engines and LIMS



Test methods user for Assay:

Conoco Sample Number: C95028 Consol Sample Number: FL2236 - POC-1 Consol Sample Number: FL2364 - POC-2

3000

Conoco Sample	tunibon George
Tool Conviced	Method used:
Test Required	Metrod deed.
ADI Comiti	ASTM D 4052
API Gravity	ASTM D 4052 ASTM D 4052
Specific Gravity	ASTM D 4032 ASTM D 611
Aniline Point, °F	ASTM D 411
Concarb, Wt%	
Metals: ppm	Ash and ICP
Vanadium	Ash and ICP
Nickel	Ash and ICP
Iron	Ash and ICP
Copper	Ash and ICP
Zinc	ASTM D 482
Ash, Wt%	ASTM D 402 ASTM D 323
RVP	ASTM D 323 ASTM D 1322
Smoke Point, °F	ASTM D 1322 ASTM D 56 and D 93
Flash Point, *F	ASTM D 36 and D 35
Pour Point, °F	ASTM D 2386
Freeze Point, *F	UOP 269 - 90
Basic Nitrogen, Wt %	UOP 163-59 / ASTM D 3227
Mercaptan Sulfur, Wt%	
Luminometer #	ASTM D 1740
Paraffins, Vol%	Analytical Controls Method
Naphthenes, Vol%	Analytical Controls Method
Aromatics, Vol%	Analytical Controls Method
Olefins, Vol%	ASTM D1319
Benzene, Vol%	Analytical Controls Method
Naphthalene, Wt%	ASTM D 1840
Pona	Analytical Controls Method
Thermal Stability	ASTM D 3241
Research Octane #	Phillips Technology Services, KEAS
Motor Octane #	Phillips Technology Services, KEAS
Cetane Index	ASTM D 976
Net Heat of Combustion	ASTM D 4529
Acidity, mg KOH/g	ASTM D 974
Copper Corrosion	ASTM D 130
Existent Gum	ASTM D 381
Oxidation Stability	ASTM D 525
Total Carbon, Wt%	Combustion using Leco CHNS - 932
Total Hydrogen, Wt%	Combustion using Leco CHNS - 932
Total Nitrogen, Wt%	ASTM D 4629
Total Oxygen, Wt%	Combustion using Leco RO - 478
Total Sulfur, Wt%	ASTM 4294
Kinematic Viscosity, -4 °F	ASTM D 445
Kinematic Viscosity, 104°	ASTM D 445
Kinematic Viscosity, 210 °	ASIM D 445
Yield	ASTM D 2892
Weight % Recovered	ASTM D 2892
Volume % Recovered	ASTM D 2892
D86 Distillation, temp °F	ASTM D 86

APPENDIX 5

CP/MAS ¹³C-NMR ANALYSES OF 15 COAL-DERIVED RESID SAMPLES

365 No. 9th St., Laramie, WY 82070-3380 • Phone: (307) 721-2011 • Fax: (307) 721-2345

September 8, 1995

Dr. Sue D. Brandes Sr. Research Engineer CONSOL, Inc. 4000 Brownsville Rd. Library, PA 15129-9566

Dear Dr. Brandes:

We have completed NMR analyses on the fifteen samples of resid composites from various coal liquefaction runs at Wilsonville and HRI. As per our statement of work, we are providing CONSOL with:

- 1. Structural and molecular parameters derived from cross polarization and dipolar dephasing NMR measurements following the procedure of Solum et al. (Energy and Fuels 1989, 3, 187). A summary table for the fifteen samples is enclosed.
- 2. Data sheets summarizing the spectral data used in the calculations. In all cases, we dropped the last four data points of the dipolar dephasing curves because these data were affected by rotational modulation. Computer fits of the dipolar dephasing data are also enclosed.
- 3. A sample calculation using the data from sample #2. We use a slightly different nomenclature for some of the parameters than does the Utah group, so we are enclosing a set of equations showing the comparisons. I hope this is not confusing.
- 4. Publication quality copies of the cross polarization NMR spectra for each of the fifteen samples. An additional spectrum is included for sample #1 that includes the instrumental parameters.

I hope everything is in order and that the data are useful to CONSOL in understanding some of the chemistry of coal liquefaction. If you have any questions you can call me at (307) 721-2307.

Sincerely,

Francis P. Miknis

Senior Staff Research Scientist

Carbon Structural Parameters Determined by ¹³C-NMR

WRI Equations	<u>Descriptor</u>	<u>Utah Equations</u>
$(1) \ f_{ar} = \frac{A_{90-240}}{A_{90-240} + A_{0-90}}$	fraction total sp ² carbon	$f_a = \frac{I_{90-240}}{I_{0-240}}$
(2) $f_{co} = f_a \times \frac{A_{165-240}}{A_{90-240}}$	carbonyl fraction	$f_a^C = f_a \times \frac{I_{165-240}}{I_{90-240}}$
(3) $f'_{ar} = f_{ar} - f_{co}$	aromatic fraction	$f_a' = f_a - f_a^c$
(4) $f_{ar}^{CH} = \frac{M_o^{CH}}{M_o^{CH} + M_o^{C}}$	protonated aromatic fraction including carbonyls, if present.	
(5) $f_{ar}^{C} = \frac{M_{o}^{C}}{M_{o}^{CH} + M_{o}^{C}}$	nonprotonated aromatic fraction including carbonyls, if present.	
(6) $f_{ar}^{P} = f_{ar}' \times \frac{A_{150-165}}{A_{90-165}}$	phenolic substituded fraction	$f_a^P = f_a' \times \frac{I_{150-165}}{I_{90-165}}$
(7) $f_{ar}^{s} = f_{ar}' \times \frac{A_{135-150}}{A_{90-165}}$	alkylated aromatic fraction	$f_a^s = f_a' \times \frac{I_{135-150}}{I_{90-165}}$
(8) $f_{ar}^{CH'} = f'_{ar} \times f_{ar}^{CH}$	protonated aromatic fraction corrected for carbonyls	$f_a^H = f_a' \times M_p$
$(9) f_{ar}^{C'} = f_{ar}' \times f_{ar}^{C}$	nonprotonated aromatic fraction corrected for carbonyls	$f_a^N = f_a' - f_a^H$
(10) $f_{ar}^{B} = f_{ar}^{C'} - f_{ar}^{P} - f_{ar}^{S}$	aromatic bridgehead fraction	$f_a^B = f_a^N - f_a^P - f_a^S$
(11) $f_{ar}^{SP} = \frac{f_{ar}^{S} + f_{ar}^{P}}{f_{ar}'}$	fraction substituted aromatic carbons	$\frac{f_a^s + f_a^P}{f_a'}$
(12) $f_{al} = 1 - f_{ar}$	fraction of total sp ³ carbon	$f_{al} = 1 - f_a$

Carbon Structural Parameters Determined by ¹³C-NMR (con't)

WRI Equations

Descriptor

Utah Equations

$$(13) \ f_{al}^{\textit{CH3OCH3}} = f_{al} \times \frac{A_{0-25} + A_{50-60}}{A_{0-90}} \ \text{methyl and methoxy carbon} \ f_{al}^* = f_{al} \times \frac{I_{2-22} + I_{50-60}}{I_{2-90}}$$

(14)
$$f_{al}^{CHCH2} = f_{al} - f_{al}^{CH3OCH3}$$

CH and CH₂ carbon fractions

$$f_{al}^{H} = f_{al} - f_{al}^{*}$$

(15)
$$f_{al}^{CO} = f_{al}^{CH3OCH3} \times \frac{A_{50-90}}{A_{0-90}}$$

fraction aliphatic carbons

$$f_{al}^{O} = f_{al} \times \frac{I_{50-90}}{I_{2-90}}$$

bonded to oxygen

Equations for Lattice Parameters Determined by ¹³C-NMR

WRI Equations

Descriptor

Utah Equations

$$(1) X_b = \frac{f_{ar}}{f_{ar}}^B$$

mole fraction condensed carbons

$$X_b = \frac{f_a}{f_a}^B$$

(2)
$$X_b = \frac{1}{2} \times \left[1 - \tanh\left(\frac{C_{ar} - 19.21}{4.15}\right) \right] \times X_b' + \frac{1}{2} \times \left[1 + \tanh\left(\frac{C_{ar} - 19.21}{4.15}\right) \right] \times X_b''$$

 C_{ar}

aromatic carbons per cluster

$$\frac{AC}{CL}$$
 or C

(3)
$$X_b' = \frac{1}{2} - \frac{3}{C_{ar}}$$

(4)
$$X_b'' = 1 - \sqrt{\frac{6}{C_{ar}}}$$

(5)
$$\sigma + 1 = \left(f_{ar}^{S} + f_{ar}^{P}\right) \times \frac{C_{ar}}{f_{ar}}$$

attachments per cluster

(6)
$$P_o = \frac{f_{ar}^{P} + f_{ar}^{S} - f_{al}^{CH3OCH3}}{f_{ar}^{P} + f_{ar}^{S}}$$
 fraction of intact bridges

$$P_{o} = \frac{f_{a}^{P} + f_{a}^{S} - f_{al}^{\bullet}}{f_{a}^{P} + f_{c}^{S}}$$

(7)
$$BL = (\sigma + 1) \times P_o$$

number of bridges and loops

same

(8)
$$SC = (\sigma + 1) - BL$$

side chains per cluster

same

(9)
$$MW_c = \frac{1201 \times C_{ar}}{f_{ar} \times \%C}$$

total molecular weight

$$MW_c = \frac{12.01 \times C}{f_{ar} \times \% \frac{C}{100}}$$

$$(10) \quad C_{al} = \frac{\%C \times MW_c \times f_{al}}{1201}$$

aliphatic carbon

(11)
$$M_{\delta} = \frac{\left[MW_{c} - \frac{12f_{ar}^{C'}C_{ar} - 13f_{ar}^{CH'}}{f_{ar}^{C''} + f_{ar}^{CH'}}\right]}{\sigma + 1}$$
 molecular weight attachment

same

Equations 2-4 were taken from M.S. Solum, R.J. Pugmire and D.M. Grant's article in Energy and Fuels 1989, 3, pp.187-193, with slight change in notation.

Solid State ¹³C NMR Analysis for 15 Resid Composite Samples

	Wilsonville261 Wilsonville261		8.000 9.000	88.360 88.920	0.475 0.361	0.525 0.639	0.693 0.665	0.307 0.335		· · · ·	0.046 0.028	0.186 0.169	0.115 0.135	0.192 0.200	0.009 0.006	0.475 0.361	0.525 0.639	0.323 0.239	0.357 0.423	0.125 0.225	0.341 0.299	0.184 0.340	0.183 0.321	9.477	0.204 0.402	3.236 5.016	0.504 0.317	1.632 1.588	1.605 3.428	189.537 342.968	4,277 8,505	
# sionill			7 (repeat) 8	89.300	0.504 0	0.496	0.712 0	0.288 0		**************************************	0.021	0.163 0	0.128 0	0.159 0	0.002 0	0.504 0	0.496 0	0.357 0	0.351 0	0.168 0	0,259 0	0.237 0		11.345	0.273 0	2.941	0.301	0.886	2.055	215,290 18	4.608	in your growing growing is
	Wilsonville261	V-1067	7.000	89.300	0.473	0.527	0.684	0.316	0.682	0.002	0.028	0.191	0.132	0.184	0.005	0.473	0.527	0.323	0.359	0.141	0.321	0.206	0.206	10,212	0.233	3.274	0.395	1.293	1.980	201.347	4.728	** *******************************
	Wilsonville260	V-131B	6.000	91.030	0.380	0.620	0.780	0.220	0.757	0.023	0.061	0.224	0.109	0.111	0.005	0.380	0.620	0.288	0.469	0.184	0.376	0.244	0.242	11,613	0.281	4.371	0.617	2.699	1.672	202.462	3.373	
WvoDak	Wilsonville260	R-1235	5.000	90.890	0.397	0.603	0.807	0.193	0.768	0.040	0.081	0.238	0.089	0.103	900'0	0.397	0.603	0.305	0.463	0.144	0.415	0.188	0.188	9.604	0.210	3.983	0.719	2.864	1.119	165.344	2,413	
	Wilsonville260	V-1067	4.000	91.030	0.340	0.660	0.805	0.195	0,764	0.041	0.073	0.233	0.097	0.098	0.003	0.340	0.660	0.260	0.505	0.200	0.399	0.261	0.259	12,469	0.306	4.977	0.683	3,397	1.579	215,253	3,175	
	Wilsonville259	V-131B	3.000	91.010	0.341	0.659	0.703	0.297	0,694	0.008	0.033	0.185	0.122	0.176	0.009	0.341	0.659	0.236	0.458	0.240	0.314	0.345	0.324	17.029	0.406	5.349	0.442	2.367	2.983	323.734	7.297	
Pittsburgh	Wilsonville259	R-1235	2.000	90.120	0.449	0.551	0.757	0.243	0,750	0.006	0.034	0.172	0.107	0.137	0.003	0.449	0.551	0.337	0.414	0.208	0.274	0.277	0.274	13,292	0.328	3.645	0,481	1.753	1.892	236.106	4.313	
	Wilsonville259	V-1067	1.000	90.240	0.437	0.563	0.717	0.283	0,710	0.008	0.043			0.175	0.001	0.437	0.563	0.310	0.400	0.187	0.299	0.264	0.262	12.596	0.310	3.769	0.493	1.859	1.910	236.215	5.02	
Coal	Run #	Location	Sample #	ر ا ا	S (S S	**	ब	**************************************	<u>.</u> 8 '	, g	, re C	Should be	1 (1)	3_ 8	5 () H		ָבֶּרָ י	, a c	ar S	x ;	ź (3	*.	sigma+1	n° i	젊 (ာ	MW	Ca	•

Solid State ¹³C NMR Analysis for 15 Resid Composite Samples

Coal			Black Thunder			Illinois # 6	BlackThunder
Hun#	Wilsonville262	Wilsonville262	Wilsonville262	Wilsonville262 Wilsonville258	Wilsonville258	HRI POC-1	HRI POC-2
Location	V-1067	R-1235	R-1235	V-131B	V-131B	0-43	0-43
Sample #	우	11	11 (repeat)	12	13	14	15
<u>ي</u> %	90.39	89.07	89.07	89.55	90.34	89.08	91.76
¥° cH	0.390	0.304	0.383	0.484	0.412	0.340	0.490
ω° _C	0.610	0.696	0.617	0.516	0.588	0.660	0.509
fa	0.677	0.723	0.736	0.708	0.758	0.609	0.563
₽	0,323	0.277	0.264	0.294	0.242	0.391	0.437
, a	0,657	0,710	0,732	0.702	0,744	0,605	0.556
fg.	0.021	0.012	0.004	0.005	0.014	0.004	0.007
far P	0.054	0.056	0.046	0.047	0.054	0.018	0.019
far S	0.193	0.208	0.199	0.204	0.209	0.154	0.133
fal	0.158	0.139	0.120	0.118	0.130	0.147	0.156
f CHCH2	0.165	0.139	0.144	0.175	0.112	0.244	0.281
8_e	0.008	0.004	0.004	0.008	0.009	0.007	600.0
1	0.390	0.304	0.383	0.484	0.412	0.340	0.490
ال 2 م	0.610	0.696	0.617	0.516	0.588	0.660	0.510
* GH.	0.256	0.216	0.280	0.340	0.306	0.205	0.272
***	0.400	0.494	0.452	0.362	0.438	0.399	0.283
f B	0.153	0.230	0.207	0.111	0.175	0.227	0.131
far SP	0.376	0.372	0.335	0.357	0.353	0.284	0.273
׳	0.233	0.324	0.282	0.159	0.235	0.376	0.237
X	0.233	0.310	0.279	0.159	0.233	0.337	0.237
Ö	11,227	15.828	13,554	8.787	11,236	18.456	11,387
••• *	0.269	0.384	0.335	0.174	0.269	0.430	0.274
sigma+1	4.226	5.891	4.540	3.137	3.972	5.248	3.112
o. 1	0.362	0.474	0.510	0.527	0.506	0.144	-0.025
퍼 :	1.528	2.795	2.318	1.654	2.011	0.755	-0.077
သွ	2.697	3.096	2.222	1.483	1.961	4.492	3.189
MW	227.116	300.419	249.746	167.925	200.692	411.676	268.188
3	5.513	6.182	4.886	3.676	3.647	11.950	8.956
Ž,	20.828	17.939	18.041	18.559	15.415	35.050	40,480

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.717
		f_{al}	0.282
A ₀₋₉₀	65.9000	f _{ar} '	0.709
A ₉₀₋₂₄₀	167.3000	f _{co}	0.007
A ₁₆₅₋₂₄₀	1.8000	f _{ar} P	0.042
A ₁₅₀₋₁₆₅	10.0000	₽ S	0.169
A ₉₀₋₁₆₅	166.1000	€ CH3OCH3	0.107
A ₁₃₅₋₁₅₀	39.7000	f CHCH2	0.175
A ₀₋₂₅	22.1000	f _{at} co	0.000
A ₅₀₋₆₀	3.0000	f _{ar} CH	0.436
A ₅₀₋₉₀	0.4000	f _{ar} c	0.563
		f _{ar} CH'	0.309
¹³ C Spect	rum Dipolar Dephasing	f _{ar} c'	0.399
M _o ch	0.4366	f _{ar} 8	0.187
M₀ ^C	0.5634	far	0.299
T_dd^G	19.72	Χ _b	0.264
T_{dd}^{L}	210.1	X _b '	0.262
		X _b "	0.310
Elementa	Analysis		
%C	90.24		
%H	6.39		
MW	12.01		
(H/C) _T	0.8504		

Structural Parameters:

Car	12.615
Cal	5.023
sigma+1	3.775
P _o	0.4931
BL	1.861
SC	1.913
MW_c	236.5654
M,	21.1101

Comments: 8/7/95 Sample: Wil. 259; V-1067

Dir: CONSOL find: con1.1ddft Contact: S. Brandes fince: con1.1cp ct: 2 msec temp: 23°C

Data pts. at 140,160,180 and 200 usec were excluded from the analysis.

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.7566
		f _{al}	0.2434
A ₀₋₉₀	53.8000	far	0.7502
A ₉₀₋₂₄₀	167.2000	fco	0.0063
A ₁₆₅₋₂₄₀	1.4000	. fa ^P	0.0339
A ₁₅₀₋₁₆₅	7.5000	_f S	0.1718
A ₉₀₋₁₆₅	165.9000	fal chaocha	0.1068
A ₁₃₅₋₁₅₀	38.0000	f _{al} CHCH2	0.1367
A ₀₋₂₅	22.1000	f _{al} CO	0.0030
A ₅₀₋₆₀	1.5000	f _{ar} CH	0.4486
A ₅₀₋₉₀	1.5000	f _{ar} ^C	0.5514
		f _{ar} ^{CH'}	0.3365
	rum Dipolar Dephasing	f _{ar} C'	0.4137
M _o ^{CH}	0.4486	f _{ar} ^B	0.2079
M₀ ^C	0.5514	f _{ar} SP	0.2743
T_{dd}^{G}	17.92	X _b	0.2772
T _{dd} ^L	202.3	X₀¹	0.2742
		X₀"	0.3280
Elementa		•	
%C	90.12		
%H	6.19		
MW	12.01		
(H/C) _T	0.8249		

Structural Parameters:

C_{ar}	13.287
C_{al}	4.312
sigma+1	3.644
P _o	0.4810
BL	1.753
SC	1.891
MWc	236.0289
M_{δ}	19.3792

Comme	enter	8/7/9) F	Campla	18/31 0E0.D400E
COMMIN		~~~ ~ ~ 9 74.5	7.5	oample:	Wil. 259;R1235
	&.				
		9.90.90. <i>9</i> 0.30.9979			
Dir 🛇	CONS	:n:		8.30.30.000.000.000.000.000.000	
	6.7%" h.aa. >-	N-100-2000000000000000000000000000000000		t.68675 - (3866) (1985 - 1986)	
fn ^{dd} :	con2.	1 4 4 1 1	Can	tact: S. Brandes	
10.00		ruur -	CUII	laci. G. Dianues	
fn ^{cp} :	con2.1	fan 100 100 100 100 100 100 100 100 100 10			G.S.X.AXX
- Professional (1988)		ιcμ			Y 1948
ct	2 mse	<u>, </u>			18 JAMES I II. N. AMEDERA A
		*			
temp:	23°C				
- remp.		2 TOOL OLD 1 TOOL (SUBJECT 1994)	.20	.: 0000 794 17000 0000 000 000 XXXIII 177	803-888888 789911.94.9686.[APT 6170]. Xib. 1

Data pts. at 140,160,180 and 200 usec were excluded from the analysis.

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.7026
		f _{al}	0.2974
A ₀₋₉₀	70.7000	f _{ar} '	0.6942
A ₉₀₋₂₄₀	167.0000	f _{co}	0.0084
A ₁₆₅₋₂₄₀	2.0000	f _{ar} P	0.0333
A ₁₅₀₋₁₆₅	7.9000	_f S	0.1848
A ₉₀₋₁₆₅	164.9000	f CH3OCH3	0.1216
A ₁₃₅₋₁₅₀	43.9000	fal CHCH2	0.1759
A ₀₋₂₅	24.9000	f _{al} co	0.0088
A ₅₀₋₆₀	4.0000	f _{ar} CH	0.3406
A ₅₀₋₉₀	5.1000	f _{ar} C	0.6594
		f _{ar} CH'	0.2365
¹³ C Spect	rum Dipolar Dephasing	f _{ar} c·	0.4577
M _o ch	0.3406	f _{ar} ^B	0.2396
M₀ ^C	0.6594	f _{ar} SP	0.3141
T_{dd}^G	20.68	X,	0.3452
T _{dd} ^L	146.9	X₀';	0.3241
		Х _ь "	0.4069
Elementa	l Analysis	, , ,	
%C	91.01		
%Н	6.50		
MW	<u> 12.01</u>		
(H/C)⊤	0.8578		

Structural Parameters

Car	17.05
Cal	7.307
sigma+1	5.36
P _o	0.4424
BL	2.3701
SC	2.9870
MWc	324.21
M_{a}	21.2336

All and a second	XXX	01111111111111111111111111111111111111	- 000 1700 000 000 000 000 000 000 000 00	
Comments:	8/7/95	S	ample: Wil. 259	9:V131B
Dir: CONSOL			\$\$\$#\$#\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
				M. A.A.MANANI
fn ^{dd} : con3,1ddf		Contact: S. E	randes	
fn ^{cp} : con3.1cp				
ct: 2 msec				
temp: 23°C			\$6.4073.0049.113.13.13.13.13.13.13.13.13.13.13.13.13	
temp: 23°C	##			
		91 9. YOURY X XX AA		
	[2] 6 (3) 2 (1) (2) (2) (3) (2) (2) (2) (2) (4) (4) (5) (4)	TO THE STOP OF A PROPERTY OF THE STOP OF T	5, 3, 08,600 i 5, 00, 166, i 65, i 6.	

Data pts. at 140,160,180 and 200 μsec were excluded from the analysis.

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.8054
		f_{al}	0.1946
A ₀₋₉₀	40.2000	f _{ar} '	0.7643
A ₉₀₋₂₄₀	166.4000	f _{co}	0.0411
A ₁₆₅₋₂₄₀	8.5000	f _a P	0.0725
A ₁₅₀₋₁₆₅	15.0000	f _{ar} S	0.2325
A ₉₀₋₁₆₅	158.1000	таг f _{al} снзоснз	0.0968
A ₁₃₅₋₁₅₀	48.1000	f _{al} CHCH2	0.0978
A ₀₋₂₅	19.0000	f _{al} co	0.0026
A ₅₀₋₆₀	1.0000	f _{ar} CH	0.3397
A ₅₀₋₉₀	1.1000	f _{ar} C	0.6603
		f _{ar} CH'	0.2597
¹³ C Spect	rum Dipolar Dephasing	f _{ar} C'	0.5046
M _o ^{CH}	0.3398	f _{ar} B	0.1996
M₀ ^C	0.6603	f _{ar} SP	0.3991
T_{dd}^G	17.79	X _b	C.2611
T _{dd} L	124.6	Хь'	0.2592
		Х _ь "	0.3061
Elementa	l Analysis	•	•
%C	91.03		
%H	6.56		
MW	12.01		

Structural Parameters

0.8655

(H/C)_⊤

C_{ar}	12.46
C_{al}	3.172
sigma+1	4.97
Po	0.6826
BL	3.3948
SC	1.5782
MW_c	215.09
M	12.3345

Comments: 8/7/95	Sample: Wil. 260;V1067
Odifficial 0/1/30	Dampie: Wil. 200, V. 100.
Dir: CONSOL	
fn ^{dd} : con4.1ddft Con	tact: S. Brandes
fn ^{cp} ; con4.1cp	
- 17.11 (20.00 A.A.) - 10.11 (17.10 - 12.10 A. 10 A	
ct: 2 msec	
0.00	
temp; 23°C	

Data pts. at:140;160,180 and 200 usec were excluded from the analysis.

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.8072
		f _{al}	0.1928
A ₀₋₉₀	39.9000	f _{ar} '	0.7675
A ₉₀₋₂₄₀	167.0000	f _{co}	0.0396
A ₁₆₅₋₂₄₀	8.2000	f _{ar} P	0.0807
A ₁₅₀₋₁₆₅	16.7000	_f S	0.2376
A ₉₀₋₁₆₅	158.9000	₽ CH3OCH3	0.0894
A ₁₃₅₋₁₅₀	49.2000	f _{al} CHCH2	0.1034
A ₀₋₂₅	16.0000	f _{al} co	0.0056
A ₅₀₋₆₀	2.5000	f _{ar} CH	0.3974
A ₅₀₋₉₀	2.5000	f _{ar} C	0.6026
		f _{ar} CH'	0.3050
¹³ C Spect	rum Dipolar Dephasing	f _{ar} C'	0.4625
M _o ^{CH}	0.3974	f _{ar} ^B	0.1442
M₀ ^C	0.6026	f _{ar} sp	0.4147
T_{dd}^{G}	13.41	X _b	0.1879
T_{dd}^{L}	126.6	Χ ₆ '	0.1883
		ኢ "	0.2105
Elementa	l Analysis	- '	
%C	90.89		
%H	6.19		
MW	12.01		
(H/C)⊤	0.8179		

Structural Parameters

Car	9.63
Cal	2.418
sigma+1	3.99
P _o	0.7191
BL	2.8705
SC	1.1213
MW_c	165.71
M,	11.6192

Comments: 8/7/95 Sample: Will 260; R1	235
Dir: CONSOL	
fn ^{dd} : con5.1ddft Contact: S. Brandes	
fn ^{cp} : con5.2cp	
ct: 2 msec temp: 23°C	
Data pts. at 140,160,180 and 200 µsec were excluded from the analysis.	

Integratio	on of ¹³ C CP Spec	trum	f _{ar}	0.7802
			f _{al}	0.2198
A ₀₋₉₀	47.0000		f _{ar} '	0.7568
A ₉₀₋₂₄₀	166.8000		f _{co}	0.0234
A ₁₆₅₋₂₄₀	5.0000		f _{ar} P	0.0606
A ₁₅₀₋₁₆₅	12.9000		_f S	0.2242
A ₉₀₋₁₆₅	161.0000		¹ar f СНЗОСНЗ	0.1090
A ₁₃₅₋₁₅₀	47.7000		fal CHCH2	0.1109
A ₀₋₂₅	21.2000		f _{al} co	0.0049
A ₅₀₋₆₀	2.1000		f _{ar} CH	0.3801
A ₅₀₋₉₀	2.1000		f _{ar} C	0.6199
			f _{ar} CH'	0.2876
13C Spect	trum Dipolar Deph	nasing	f _{ar} C'	0.4692
M _o CH	0.3801		f _{ar} B	0.1843
M₀ ^C	0.6199		f _{ar} SP	0.3764
$T_{dd}{}^{G}$	14.32		X_b	0.2435
$T_{dd}{}^{L}$	130.0		X _b '	0.2431
			X _b "	0.2832
	l Analysis		•	
%C	91.03			
%H	6.61	•		
MW	12.01			
(H/C) _⊤	0.8721			

Structural Parameters

C_{ar}	11.68
C_{al}	3.392
sigma+1	4.40
P _o	0.6174
BL	2.7138
SC	1.6816
MW_c	203.58
M	13 4261

	~~~~~~
Comments: 8/7/95 Sample: Wil. 260;V131B	
Dir: CONSOL	
fn ^{dd} : con6:1ddft Contact: S. Brandes	
fn ^{cp} ; con6;1cp	
· · · · · · · · · · · · · · · · · · ·	&600M
ct: 2 msec	
temp: 23°C	
Data ats at 140 160 180 and 200 uses were excluded from the analysis	

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.6842
		f _{al}	0.3158
A ₀₋₉₀	76.4000	f _{ar} '	0.6821
A ₉₀₋₂₄₀	165.5000	f _{co}	0.0021
A ₁₆₅₋₂₄₀	0.5000	f _{er} P	0.0281
A ₁₅₀₋₁₆₅	6.8000	₽ S	0.1906
A ₉₀₋₁₆₅	165.0000	таг f _{al} снзоснз	0.1323
A ₁₃₅₋₁₅₀	46.1000	f _{al} CHCH2	0.1835
A ₀₋₂₅	29.1000	f _{al} co	0.0050
A ₅₀₋₆₀	2.9000	f _{ar} CH	0.4733
A ₅₀₋₉₀	2.9000	f _{ar} C	0.5267
		f _{ar} CH'	0.3229
13C Specti	rum Dipolar Dephasing	f _{ar} C'	0.3592
M₀ ^{CH}	0.4733	f _a ^B	0.1406
M₀ ^C	0.5267	f _{ar} SP	0.3206
$T_dd^G$	19.09	X _b	0.2061
$T_{dd}^{L}$	204.5	χ,'	0.2057
		Х _ь "	0.2329
Elemental	Analysis	,	
%C	89.30		
%H	6.61		
MW	12.01		
(H/C) _T	0.8890		

### Structural Parameters

Car	10.20
Cal	4.721
sigma+1	3.27
P.	0.3951
BL	1.2914
SC	1.9772
MWc	201.02
M,	22.5940

2	
Comments: 8/7/95 Sample: Wil. 261; V106	7
Dir: CONSOL	
fn ^{dd} : con7.1ddft Contact: S. Brandes	
fn ^{cp} ; con7.1cp	
ct: 2 msec	
temp: 23°C	

Data pts. at 140,160,180 and 200 µsec were excluded from the analysis.

Run 2

Integratio	on of ¹³ C CP Spectrum	f _{ar}	0.7122
		$f_{al}$	0.2878
A ₀₋₉₀	67.5000	f _{ar} '	0.7087
A ₉₀₋₂₄₀	167.0000	$f_{CO}$	0.0034
A ₁₆₅₋₂₄₀	0.8000	f₃r ^P	0.0211
A ₁₅₀₋₁₆₅	5.0000	f S	0.1626
A ₉₀₋₁₆₅	167.8000	far fal	0.1284
A ₁₃₅₋₁₅₀	38.5000	f CHCH2	0.1595
A ₀₋₂₅	28.9000	f _{al} CO	0.0023
A ₅₀₋₆₀	1.2000	f _{ar} CH	0.5042
A ₅₀₋₉₀	1.2000	f _{ar} ^C	0.4958
		f _{ar} CH'	0.3573
¹³ C Spect	trum Dipolar Dephasing	f _{ar} ^{C'}	0.3514
M₀ ^{CH}	0.5042	f _{ar} ^B	0.1677
M₀ ^C	0.4958	f _{ar} sp	0.2592
$T_{dd}^G$	19.63	Χ _b	0.2366
T _{dd} L	275.8	X _b '	0.2356
		X _b "	0.2728
Elementa	l Analysis	Ţ.	
%C	89.30		
%H	6.61		
MW	12.01		
(H/C) _⊤	0.8890		

### Structural Parameters

$C_{ar}$	11.35
$C_{al}$	4.608
sigma+1	2.94
P _o	0.3014
BL.	0.8864
SC	2.0547
$MW_c$	215.28
M _a	24.9647

Comments: 8/17/95 Sample: Wil. 261;V1067

Dir: CONSOL
fn^{dd}: con7.2ddft Contact: S. Brandes
fn^{cp}: con7.2cp
ct: 2 msec
temp: 23°C

Data pts. at 140,160,180 and 200 µsec were excluded from the analysis.

Integration of ¹³ C CP Spectrum		ectrum f _{ar}	0.6933
		f _{al}	0.3067
A ₀₋₉₀	74.1000	f _{ar} '	0.6796
A ₉₀₋₂₄₀	167.5000	fco	0.0137
A ₁₆₅₋₂₄₀	3.3000	f _{ar} P	0.0456
A ₁₅₀₋₁₆₅	11.0000	f S	0.1865
A ₉₀₋₁₆₅	164.0000	f Ch	оли на
A ₁₃₅₋₁₅₀	45.0000	اها Ch f <u>al</u>	O.1916
A ₀₋₂₅	23.6000	f _{al} c	0.0090
A ₅₀₋₆₀	4.2000	far	
A ₅₀₋₉₀	5.8000	far	0.5250
		f CI far	
13C Spect	rum Dipolar Dep	phasing f _{ar} C	
M _o ^{CH}	0.4750	f _a	0.1247
M°c	0.5250	f SF far	
$T_{dd}^G$	17.30	Χ _b	0.1835
$T_{dd}^{L}$	242.6	χ,'	0.1836
		Χ,"	0.2045
Elementa	l Analysis	_	•
%C	88.36		
%H	6.66		
MW	12.01		
(H/C)⊤	0.9052		

### Structural Parameters

Car	9.48
Cal	4.279
sigma+1	3.24
Po	0.5042
BL	1.6322
SC	1.6052
$MW_c$	189.61
M _a	22.0349

Comments; 8/8/95	Sample; Wil. 261;R1235
Dir: CONSOL	
fn ^{dd} ; con8.1ddft	Contact: S. Brandes
fn ^{cp} ; con8.1cp	
ct: 2 msec	
temp: 23°C	

Data pts, at 140,160,180 and 200 usec were excluded from the analysis.

Integration of ¹³ C CP Spectrum		ctrum	f _{ar}	0.6651
		And the Control of th	f _{al}	0.3349
A ₀₋₉₀	84.1000		f _{ar} '	0.6615
A ₉₀₋₂₄₀	167.0000		f _{co}	0.0036
A ₁₆₅₋₂₄₀	0.9000		far	0.0283
A ₁₅₀₋₁₆₅	7.1000		f S	0.1693
A ₉₀₋₁₆₅	166.1000		€ CH3OCH3	0.1350
A ₁₃₅₋₁₅₀	42.5000		fal CHCH2	0.1999
A ₀₋₂₅	31.0000		fal	0.0061
A ₅₀₋₆₀	2.9000		f _{ar} CH	0.3613
A ₅₀₋₉₀	3.8000		far	0.6387
			f _{ar} CH'	0.2390
13C Spect	rum Dipolar Depl	hasing	f _{ar} C'	0.4225
M _o ^{CH}	0.3613	<del></del>	f _{ar} B	0.2250
M₀ ^c	0.6387		f _{ar} SP	0.2986
$T_{dd}^G$	18.72		Χ _b	0.3401
$T_{dd}{}^{L}$	160.8		X₀'	0.3213
			Х _ь "	0.4021
Elemental	Analysis		•	
%C	88.92	•		
%H	6.61			
MW	12.01			
(H/C) _T	0.8928			

### Structural Parameters

$C_{ar}$	16.79
$C_{al}$	8.499
sigma+1	5.01
P _o	0.3165
BL	1.5867
SC	3.4261
MWc	342.76
M	26 9815

Comments: 8/8/95 Sample: Wil. 261;V131B	4
	É
Dir: CONSOL	ļ
12.44	
fn ^{cp} : con9:1cp	
ct: 2 msec	
tempt 23°C	
Data pts: at 140,160,180 and 200 usec were excluded from the analysis:	1

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.6775
		f _{al}	0.3225
A ₀₋₉₀	79.5000	f _{ar} '	0.6568
A ₉₀₋₂₄₀	167.0000	fco	0.0207
A ₁₆₅₋₂₄₀	5.1000	f _{ar}	0.0544
A ₁₅₀₋₁₆₅	13.4000	_f S	0.1928
A ₉₀₋₁₆₅	161.8000	°аг fal Снзоснз	0.1578
A ₁₃₅₋₁₅₀	47.5000	f _{al} CHCH2	0.1647
A ₀₋₂₅	34.9000	f _{al} CO	0.0079
A ₅₀₋₆₀	4.0000	f _{ar} CH	0.3903
A ₅₀₋₉₀	4.0000	f _{ar} c	0.6097
		f _{ar} CH'	0.2563
13C Spect	rum Dipolar Dephasin	g f _{ar} c	0.4005
M _o CH	0.3903	f _{ar} ^B	0.1532
M₀ ^C	0.6097	f _{ar} SP	0.3764
$T_{dd}^{G}$	17.31	Χ _b	0.2333
$T_dd^{L}$	158.6	X₀'	0.2326
		Х _ь "	0.2687
Elementa	<del></del>		•
%C	90.39		
%H	7.09		
MW	12.01		
(H/C) _⊤	0.9420		

### Structural Parameters

Car	11.22
Caj	5.510
sigma+1	4.22
P _o	0.3616
BL	1.5273
SC	2.6959
$MW_c$	226.99
М	20 8283

Comments: 8/8/95 Sample: Wil. 262;V1	067
Dir: CONSOL	
fn ^{dd} : con10.1ddft Contact: S. Brandes	
fn ^{cp} ; con10.1cp	
ct: 2 msec	
$10^{\circ}$ ,	
temp: 23°C	

Data pts. at 140,160,180 and 200 μsec were excluded from the analysis.

Integratio	n of 13C CP Spectrum	f _{er}	0.7225
		$f_{al}$	0.2775
$A_{0-90}$	64.1000	f _{ar} '	0.7104
A ₉₀₋₂₄₀	166.9000	fco	0.0121
A ₁₆₅₋₂₄₀	2.8000	$f_{ar}^{P}$	0.0563
A ₁₅₀₋₁₆₅	13.0000	_f S	0.2080
A ₉₀₋₁₆₅	163.9000	€ CH3OCH3	0.1390
A ₁₃₅₋₁₅₀	48.0000	f _{al} CHCH2	0.1385
A ₀₋₂₅	30.1000	f _{al} CO	0.0043
A ₅₀₋₆₀	2.0000	f _{ar} CH	0.3043
A ₅₀₋₉₀	2.0000	f _{ar} ^C	0.6957
		f _{ar} CH'	0.2162
¹³ C Spect	rum Dipolar Dephasing	f _{ar} ^{C'}	0.4942
M _o CH	0.3043	f _{ar} ^B	0.2298
M°c	0.6957	f _{ar} SP	0.3722
$T_{dd}^{G}$	16.09	Χ _b	0.3235
$T_{dd}^{L}$	127.4	X _b '	0.3104
		X _b "	0.3843
Elementa	l Analysis	- 1	
%C	89.07		
%H	6.87		
MW	12.01		
(H/C)⊤	0.9263		

### Structural Parameters

$C_{ar}$	15.83
$C_{al}$	6.182
sigma+1	5.89
P _o	0.4744
BL	2.7944
SC	3.0959
MW _c	300.40
М	17 9390

V*************************************	
Comments:	8/9/95 Sample; Wil. 262;R1235
Dir: CONS	
- 94.000.00.00000 WWW.W.Y. WY	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ddft Contact: S. Brandes
fn ^{cp} : con11	nin
	<b>~</b>
ct: 2 mse	
temp 29°C	

Data pts. at 140,160,180 and 200 μsec were excluded from the analysis.

Sample: CONSOL 11 Run 2

Integration	on of ¹³ C CP Spectrum	f _{ar}	0.7362
		f _{al}	0.2638
A ₀₋₉₀	59.8000	f _{ar} '	0.7318
A ₉₀₋₂₄₀	166.9000	f _{co}	0.0044
A ₁₆₅₋₂₄₀	1.0000	f _{ar} P	0.0463
A ₁₅₀₋₁₆₅	10.5000	f _{ar} S	0.1988
A ₉₀₋₁₆₅	166.0000	far fal	0.1200
A ₁₃₅₋₁₅₀	45.1000	f _{al} CHCH2	0.1438
A ₀₋₂₅	26.1000	$f_{al}^CO$	0.0042
A ₅₀₋₆₀	1.1000	f _{ar} CH	0.3829
A ₅₀₋₉₀	2.1000	f _{ar} ^C	0.6171
		f _{ar} CH'	0.2802
¹³ C Spect	trum Dipolar Dephasing	f _{ar} C'	0.4516
M _o CH	0.3829	f _{ar} ^B	0.2065
M₀ ^C	0.6171	f _{ar} SP	0.3349
$T_{dd}^G$	20.61	. X _b	0.2822
$T_{dd}^{L}$	173.0	<b>Χ</b> _ν '	0.2785
		Хь"	0.3345
Elementa	ıl Analysis		•
%C	89.07		
%H	6.87		
MW	12.01		
(H/C) _⊤	0.9263		

# Structural Parameters

Car	13.55	
Cal	4.883	
sigma+1	4.54	
P _o	0.5105	
BL,	2.3163	
SC	2.2211	
$MW_c$	249.61	
M _a	18.0407	

Comments: 8/14/95 Sample: Wil. 262;R1235
Dir: CONSOL
fn ^{dd} : con11.2ddft Contact: S. Brandes
fn ^{cp} ; con11,2cp
ct: 2 msec
temp: 23°C
Data pts. at 140,160,180 and 200 μsec were excluded from the analysis.

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.7064
		$f_{al}$	0.2936
$A_{0-90}$	69.4000	f _{ar} '	0.7018
A ₉₀₋₂₄₀	167.0000	f _{co}	0.0047
A ₁₆₅₋₂₄₀	1.1000	f _{ar} P	0.0470
A ₁₅₀₋₁₆₅	11.1000	f _{ar} S	0.2036
A ₉₀₋₁₆₅	165.8000	f_CH3OCH3	0.1184
A ₁₃₅₋₁₅₀	48.1000	f _{al} CHCH2	0.1751
A ₀₋₂₅	24.0000	f _{at} co	0.0084
A ₅₀₋₆₀	4.0000	f _{ar} CH	0.4842
A ₅₀₋₉₀	4.9000	f C	0.5158
		f _{ar} CH'	0.3398
¹³ C Spect	rum Dipolar Dephasing	f _{ar} C'	0.3620
M _o CH	0.4842	f _{ar} ^B	0.1114
M₀ ^C	0.5158	far	0.3571
$T^{dd}^G$	21.37	Χ _b	0.1587
$T_{dd}{}^{L}$	327.8	X _β '	0.1591
		X,"	0.1743
Elementa	l Analysis	,	
%C	89.55		
%Н	7.06		
MW	12.01		
(H/C) _⊤	0.9469		

### Structural Parameters

$C_{ar}$	8.80
Cal	3.68
sigma+1	3.14
P.	0.5273
BL	1.6569
SC	1.4853
MWc	168.18
M _a	18.5588

Comments: 8/9/95 Sample; Wil. 262;V131B  Dir: CONSOL fn ^{dd} : con12:1ddft Contact: S. Brandes fn ^{cp} ; con12:1cp ct: 2 msec temp; 23°C	
Data pts; at 140,160,180 and 200 usec were excluded from the analysis.	

Integratio	on of ¹³ C CP Spectrum	f _{ar}	0.7584
		f _{al}	0.2416
A ₀₋₉₀	53.2000	f _{ar} '	0.7443
A ₉₀₋₂₄₀	167.0000	f _{co}	0.0141
A ₁₆₅₋₂₄₀	3.1000	f _{ar} P	0.0541
A ₁₅₀₋₁₆₅	11.9000	f _{ar} s	0.2090
A ₉₀₋₁₆₅	163.8000	f CH3OCH3	0.1299
A ₁₃₅₋₁₅₀	46.0000	f _{al} CHCH2	0.1117
A ₀₋₂₅	25.9000	f _a ^{CO}	0.0088
A ₅₀₋₆₀	2.7000	f _{ar} CH	0.4118
A ₅₀₋₉₀	3.6000	f _{ar} C	0.5882
		f _{ar} CH'	0.3065
13C Spect	trum Dipolar Dephasing	f _{ar} C'	0.4378
M _o CH	0.4118	f _{ar} ⁸	0.1747
M₀ ^C	0.5882	f _{ar} SP	0.3535
$T_{dd}{}^{G}$	13.74	$X_{b}$	0.2347
$T_{dd}{}^{L}$	149.7	Хь'	0.2330
		Х _ь "	0.2693
Elementa	l Analysis	•	
%C	90.34		
%H	8.55		
MW	12.01		
(H/C) _⊤	1.1367		

Stru	ictural	Para	meters

_	
C _{ar}	11.24
$C_{al}$	3.65
sigma+1	3.97
P _o	0.5063
BL	2.0113
SC	1.9609
$MW_c$	200.71
M,	15.4154

Comments: 8/10/95 Sample: Wil. 258;V131B	
Dir: CONSOL	
fn ^{dd} : con13.1ddft Contact: S. Brandes	
fn ^{cp} ; con13/1cp ct: 2 msec	
temp: 23°C	
Data pts. at 140,160,180 and 200 usec were excluded from the analysis.	

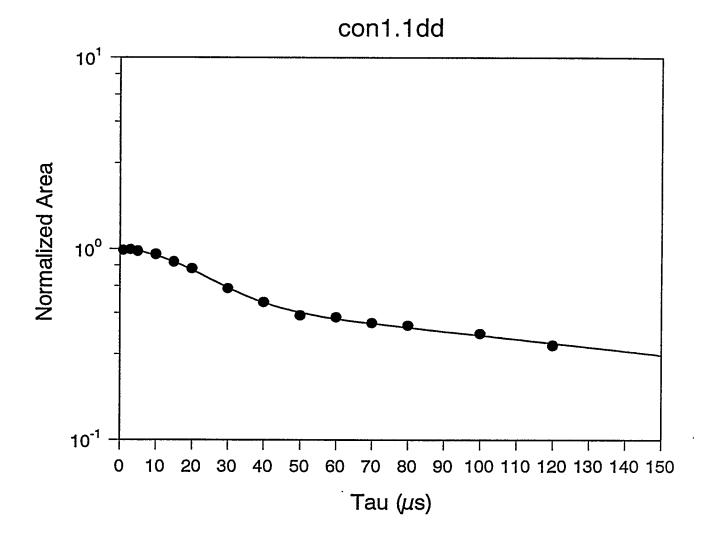
Integratio	n of ¹³ C CP Spectr	rum_	f _{ar}	0.6086
			f _{al}	0.3914
A ₀₋₉₀	108.0000		f _{ar} '	0.6046
A ₉₀₋₂₄₀	167.9000		fco	0.0040
A ₁₆₅₋₂₄₀	1.1000		f _{er} P	0.0178
A ₁₅₀₋₁₆₅	4.9000		_f S	0.1541
A ₉₀₋₁₆₅	166.0000		f CH3OCH3	0.1472
A ₁₃₅₋₁₅₀	42.3000		fal CHCH2	0.2443
A ₀₋₂₅	36.5000		f _{al} co	0.0068
A ₅₀₋₆₀	4.1000		f _{ar} CH	0.3398
A ₅₀₋₉₀	5.0000		f _{ar} C	0.6602
			f _{ar} CH'	0.2054
13C Spect	rum Dipolar Depha	asing	f _{ar} C'	0.3992
M _o ^{CH}	0.3398	,	f _{ar} B	0.2273
M₀ ^c	0.6603		f _{ar} SP	0.2843
$T_{dd}{}^{G}$	17.79		Χ _b	0.3759
$T_{dd}^{L}$	124.6		X⁰,	0.3375
			X _b "	0.4298
Elementa			•	
%C	89.06			
%Н	8.36			
MW	12.01	•		
(H/C) _⊤	1.1274			

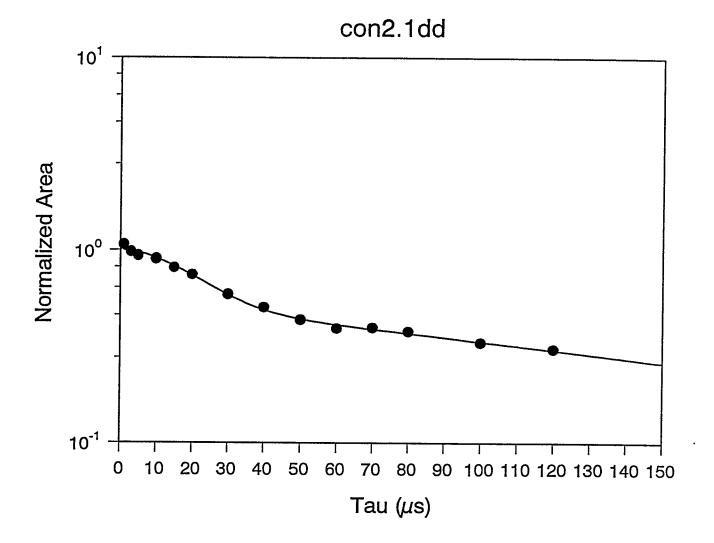
### Structural Parameters

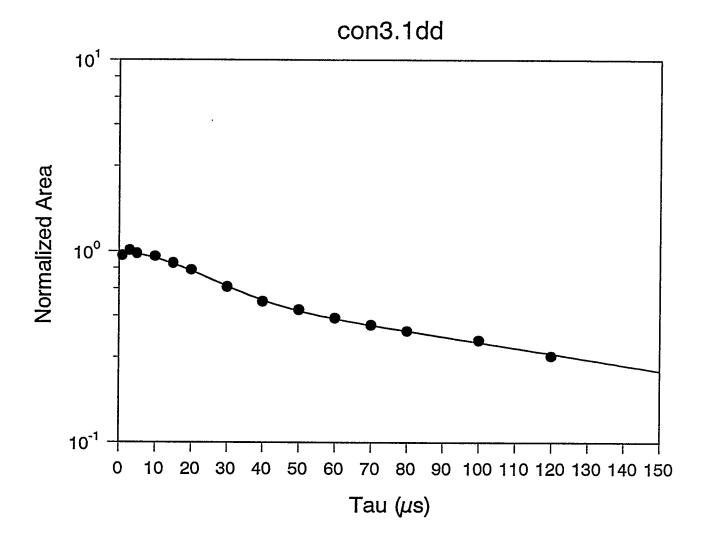
$C_{ar}$	18.46
$C_{al}$	11.95
sigma+1	5.25
P _o	0.1440
BL	0.7554
SC	4.4923
$MW_c$	411.68
M,	35.0498

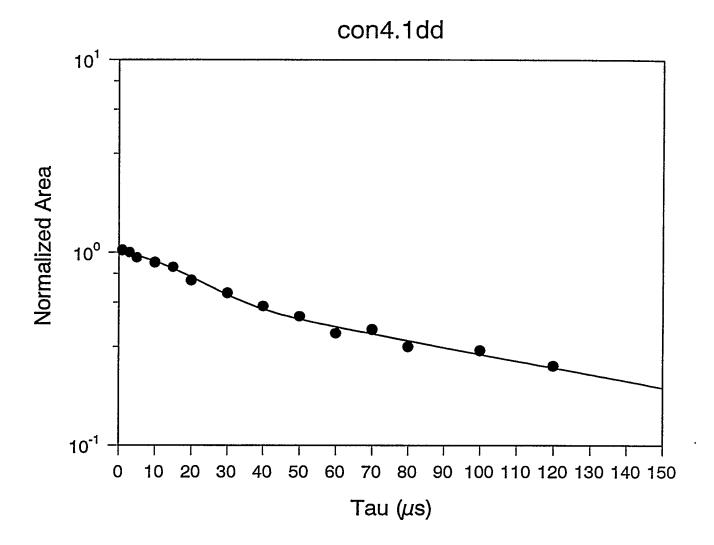
***************************************			
Comments:	8/11/95	Sample: HRI P(	OC-1, O-43
Dir: CONSC			
fn ^{dd} : con14.	VAAN IN 1944 PARKANIN BAAAA BAAAA BAAAA AAAA AAAA AAAA AA	S. Brandes	
fn ^{cp} con14.		G. Diarios	
ct: 2 msec			
temp: 23°C			

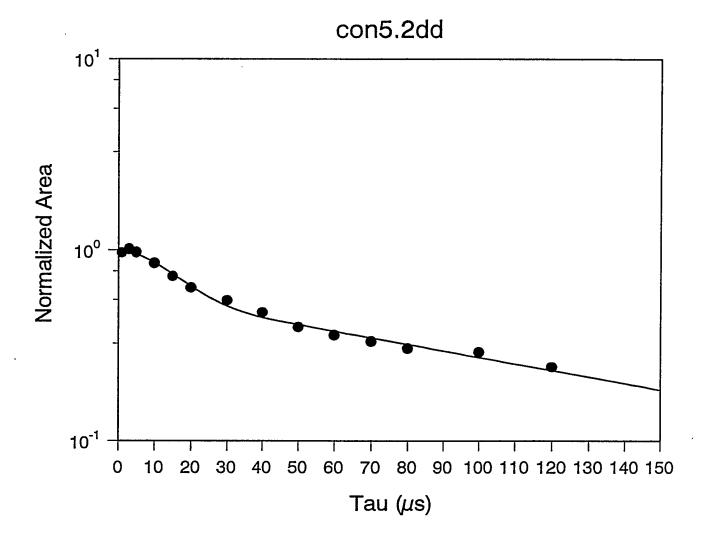
Data pts. at 140,160,180 and 200 μsec were excluded from the analysis.

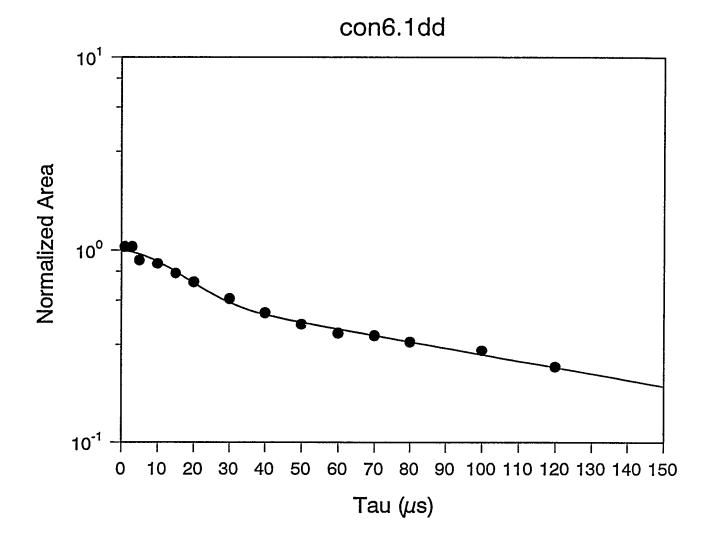

Integratio	n of ¹³ C CP Spectrum	f _{ar}	0.5629
		f _{al}	0.4371
A ₀₋₉₀	91.0000	f _{ar} '	0.5557
A ₉₀₋₂₄₀	117.2000	fco	0.0072
A ₁₆₅₋₂₄₀	1.5000	f _{ar} P	0.0187
A ₁₅₀₋₁₆₅	3.9000	fS	0.1332
A ₉₀₋₁₆₅	116.0000	f _{al} CH3OCH3	0.1556
A ₁₃₅₋₁₅₀	27.8000	fachch2	0.2815
A ₀₋₂₅	28.1000	faco	0.0091
A ₅₀₋₆₀	4.3000	f _{ar} CH	0.4902
A ₅₀₋₉₀	5.3000	f _{ar} C	0.5098
		f _{ar} CH'	0.2724
13C Spect	rum Dipolar Dephasing	f _{ar} c·	0.2833
M _o ^{CH}	0.4898	f _{ar} ^B	0.1314
M₀ ^C	0.5094	f _{ar} SP	0.2733
$T_{dd}^{G}$	22.06	X _b	0.2365
T _{dd} L	224.9	X _b '	0.2347
		Χ _ν "	0.2716
Elementa	l Analysis	•	
%C	91.76		
%H	5.83		
MW	12.01		
(H/C) _T	0.7631		

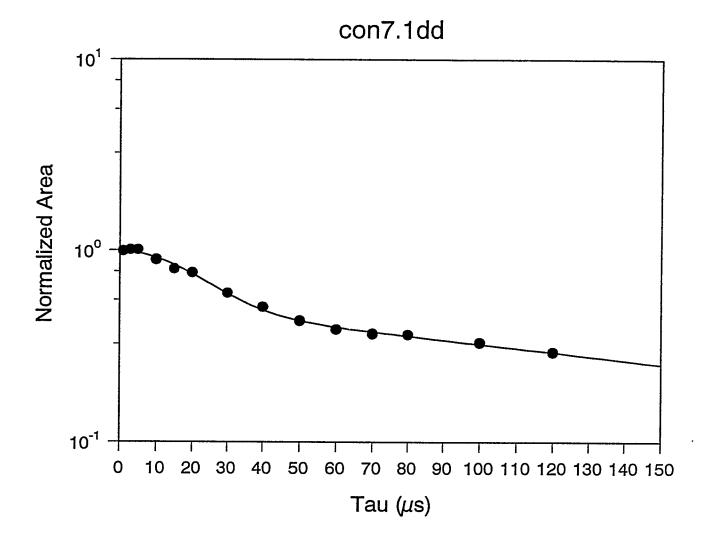

### Structural Parameters

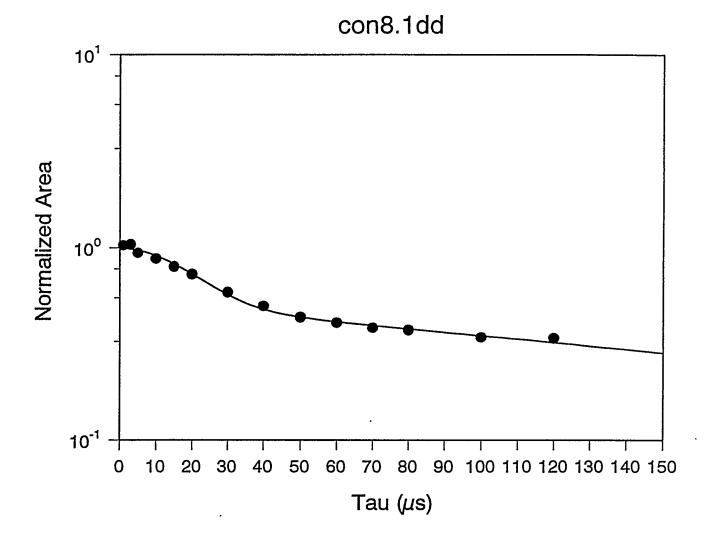

C _{ar}	11.31
$C_{al}$	8.89
sigma+1	3.09
P _o	-0.0247
BL	-0.0764
SC	3.1668
$MW_c$	266.35
M,	40.4802

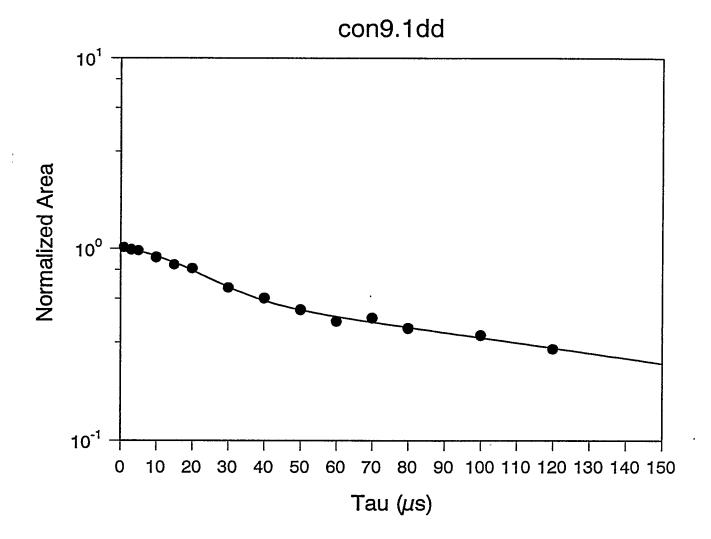

Comments: 9/7/95 Sample: HRI POC-2, 0	\$ 4000000
out internal, and an analysis and FOC-2, C	<b>୵</b> ୷ୠଊୡୡ
Dir; CONSOL	
fn ^{dd} : con15.Rddft Contact: S. Brandes	9488 MARIE
fn ^{co} r con15;Rcp	
r in 1906 de 2007 MCC Comence ao america de comencia de comence de comencia de comencia de comencia de comencia	
ct: 2 msec	
	coay.
temp: 23°C	

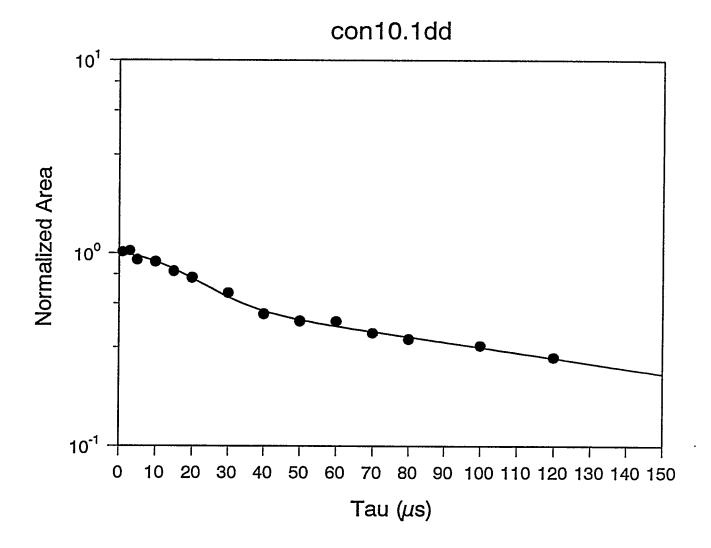

Data pts. at 140,160,180 and 200 μsec were excluded from the analysis.

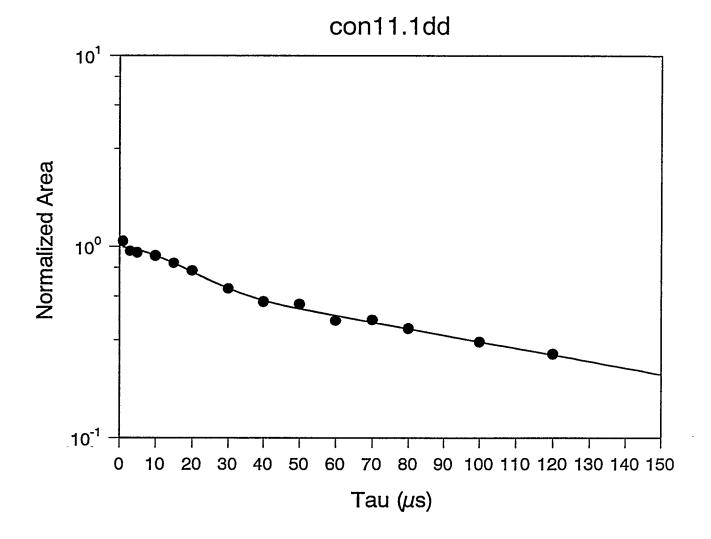


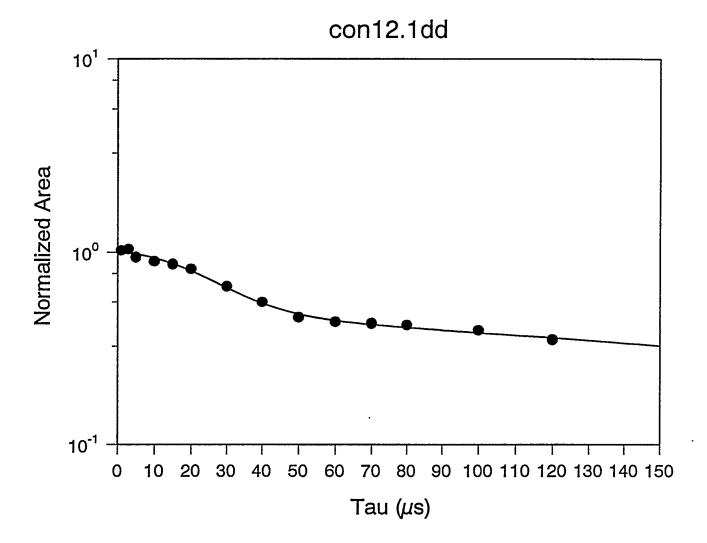



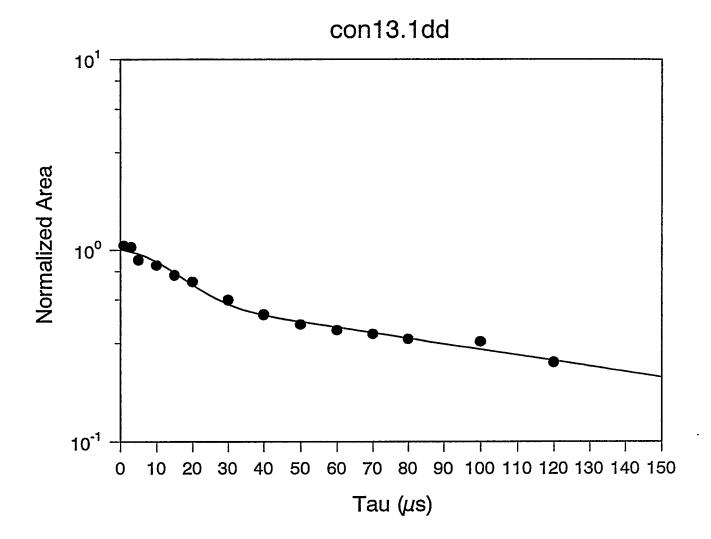



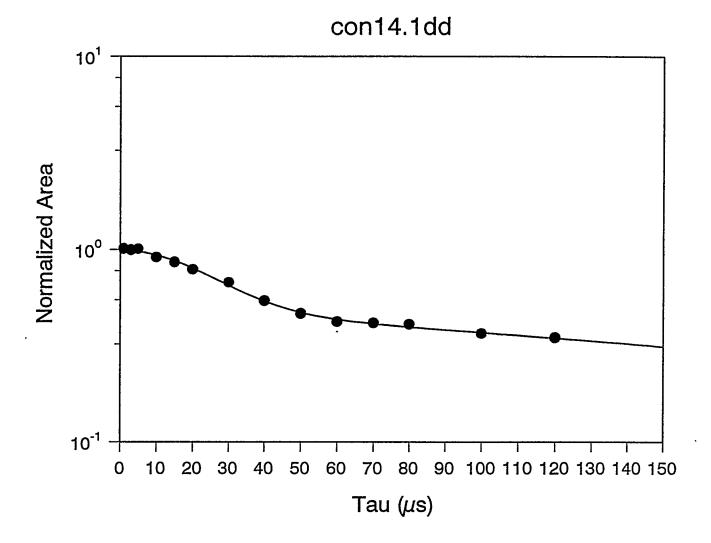



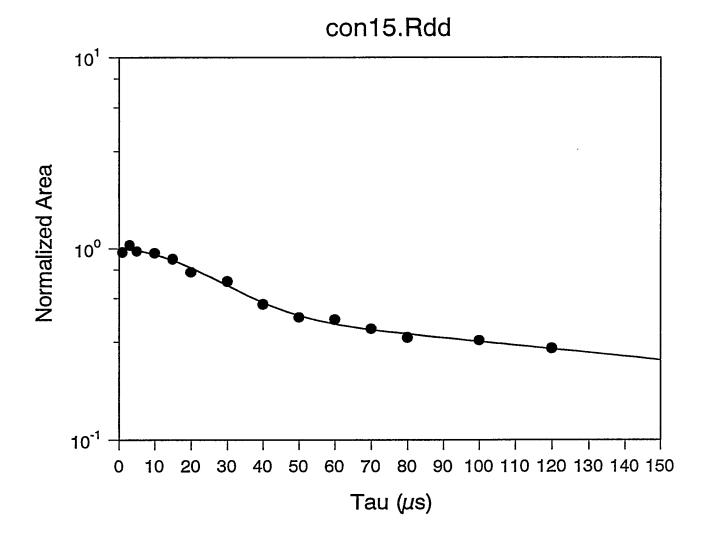














#### Structural Parameter Calculations for Sample 2

$$\left(\frac{H}{C}\right)_{T} = \frac{\%H \times 12}{\%C} = \frac{6.19 \times 12}{90.12} = .825$$

$$f_{ar} = \frac{A_{90-240}}{A_{90-240} + A_{0-90}} = \frac{167.2}{167.2 + 53.8} = ..7566$$

$$f_{co} = f_{ar} \times \frac{A_{165-240}}{A_{90-240}} = .7566 \times \frac{1.40}{167.2} = .0063$$

$$f_{ar}' = f_{ar} - f_{co} = .7566 - .0063 = .7502$$

$$f_{ar}^{P} = f_{ar}' \times \frac{A_{150-165}}{A_{90-165}} = .7502 \times \frac{7.50}{165.9} = 0.0339$$

$$f_{ar}^{\ \ S} = f_{ar}^{\ \ '} \times \frac{A_{135-150}}{A_{90-165}} = .7502 \times \frac{38.0}{165.9} = .1718$$

$$f_{al} = 1 - f_{ar} = 1 - .7566 = .2434$$

$$f_{al}^{\ CH3OCH3} = f_{al} \times \frac{A_{0-25} + A_{50-60}}{A_{0-90}} = .2434 \times \frac{22.1 + 1.5}{53.8} = .1068$$

$$f_{al}^{CHCH2} = f_{al} - f_{al}^{CH3OCH3} = .2434-.1068 = .1367$$

$$f_{al}^{\ \ co} = f_{al}^{\ \ CH3OCH3} \times \frac{A_{50-90}}{A_{0-90}} = .1068 \times \frac{15}{53.8} = .0030$$

$$f_{ar}^{CH} = \frac{M_o^{CH}}{M_o^{CH} + M_o^{C}} = \frac{.4486}{.4486 + .5514} = .4486$$

$$f_{ar}^{\ \ c} = \frac{M_o^{\ c}}{M_o^{\ CH} + M_o^{\ c}} = \frac{5514}{.4486 + .5514} = .5514$$

$$f_{ar}^{CH'} = f_{ar}^{'} \times f_{ar}^{CH} = .7502 \times .4486 = .3365$$

$$f_{ar}^{\ \ C'} = f_{ar}^{\ \ '} \times f_{ar}^{\ \ C} = .7502 \times .5514 = .4577$$

$$f_{ar}^{\ \ B} = f_{ar}^{\ \ C'} - f_{ar}^{\ \ P} - f_{ar}^{\ \ S} = .5514 - .0339 - .1718 = .2079$$

$$f_{ar}^{SP} = \frac{f_{ar}^{S} + f_{ar}^{P}}{f_{ar}} = \frac{.1718 + .0339}{.7502} = .2743$$

#### Lattice Parameter Calculations for Sample 2

$$X_b = \frac{f_{ar}}{f_{ar}}^B = \frac{.2079}{.7502} = .2772$$

$$X_{b} = \frac{1}{2} \times \left[ 1 - \tanh\left(\frac{C_{ar} - C_{o}}{m}\right) \right] \times X_{b} + \frac{1}{2} \times \left[ 1 + \tanh\left(\frac{C_{ar} - C_{o}}{m}\right) \right] \times X_{b}$$

.2772 = 
$$\frac{1}{2} \times \left[ 1 - \tanh \left( \frac{C_{ar} - 19.01}{4.15} \right) \right] \times .2742 + \frac{1}{2} \times \left[ 1 + \tanh \left( \frac{C_{ar} - 19.01}{4.15} \right) \right] \times .3280$$

Iterating with the above equation and the next two equations:  $C_{ar} = 13.287$ 

$$X_{b}' = \frac{1}{2} - \frac{3}{C_{...}} = \frac{1}{2} - \frac{3}{13.287} = .2742$$

$$X_b'' = 1 - \sqrt{\frac{6}{C_{--}}} = 1 - \sqrt{\frac{6}{13.287}} = .3280$$

$$C_{al} = \frac{\%C \times MW_c}{1200 \times f_{al}} = \frac{13.287 \times 236.03}{1200 \times .2434} = 4.3151$$

$$\sigma + 1 = (f_{ar}^{\ \ \ \ \ \ \ \ \ \ \ \ } + f_{ar}^{\ \ \ \ \ \ \ \ \ }) \times \frac{C_{ar}}{f_{cr}} = (.1718 + .0339) \times \frac{13.287}{.7502} = 3.644$$

$$P_o = \frac{f_{ar}^{P} + f_{ar}^{S} - f_{al}^{CH3OCH3}}{f_{ar}^{P} + f_{ar}^{S}} = \frac{.0339 + .1718 - .1068}{.0339 + .1718} = .4810$$

$$BL = (\sigma + 1) \times P_o = 3.644 \times .4810 = 1.753$$

$$SC = (\sigma + 1) - BL = 3.644 - 1.753 = 1.891$$

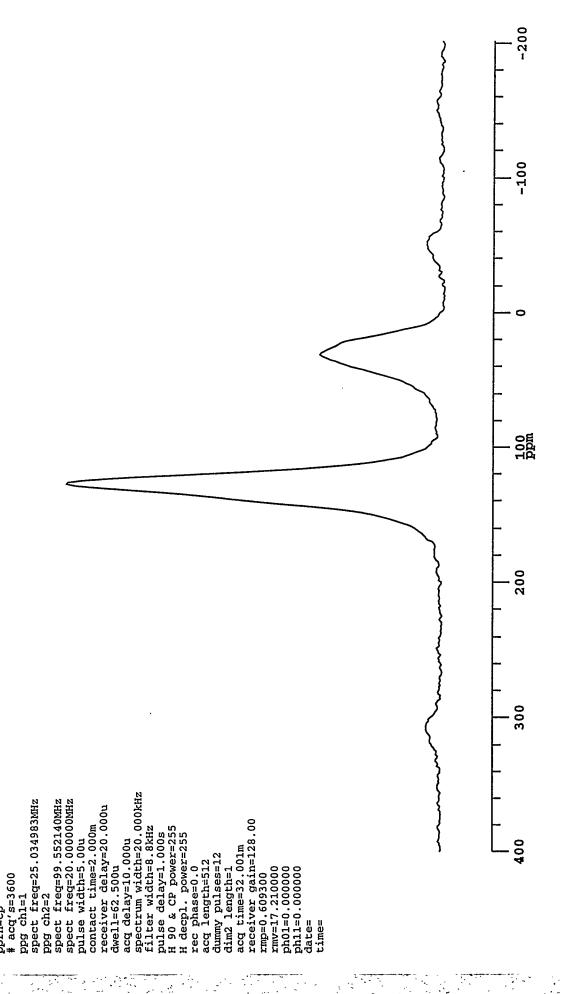
$$MW_c = \frac{1201 \times C_{ar}}{f_{ar} \times \%C} = \frac{1201 \times 13.287}{.7502 \times 90.12} = 236.03$$

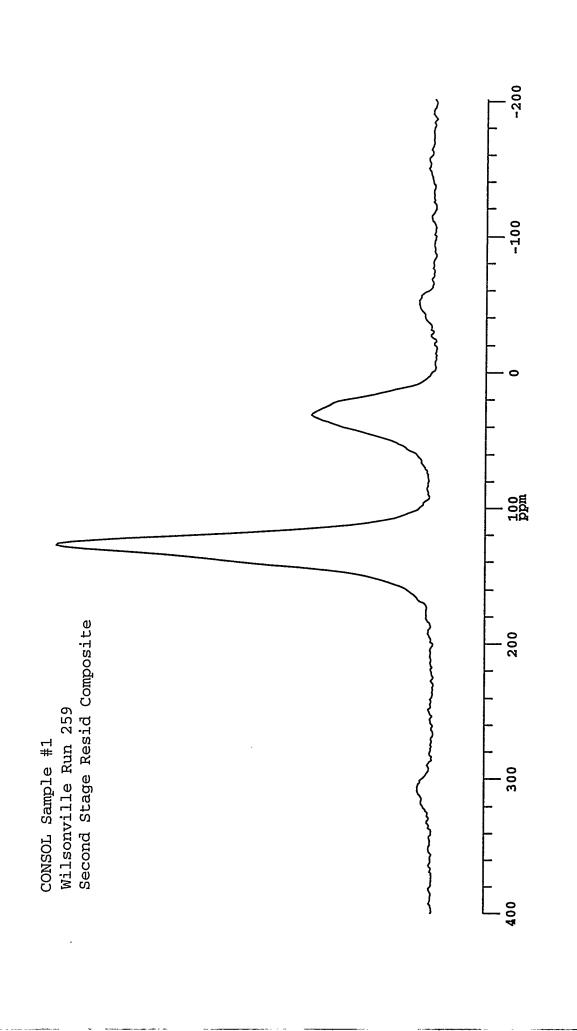
## €.S<u>£</u> 50 9 135 - 150 A150-165 165 A 136-150 A165-246 Ago-165 0.001 Aq6-240 100 mďď 150 directory=/home/nmruser/data/CONSOL/con2.1cp filename=con2.1cp com=Consol Sample #2, Wil.259, R1235, 90.12% C, 200 spect freq=99.552140MHz spect freq=20.00000MHz spect freq=20.00000MHz pulse width=5.00u contact time=2.000m receiver delay=20.000u acq delay=10.00u spectrum width=8.8kHz filter width=8.8kHz pulse delay=1.000s H 90 & CP power=255 H 6cpl. power=255 H 6cpl. power=255 rec phase=0.0 acq length=11 acq length=1 acq time=32.001m receiver gain=128.00 rmy=0.609300 rmv=17.210000 ph01=0.000000 ppfn=cp # acq's=3600 ppg ch1=1 spect freq=25.034983MHz ppg ch2=2 WRI NMR Center 250 date= time=

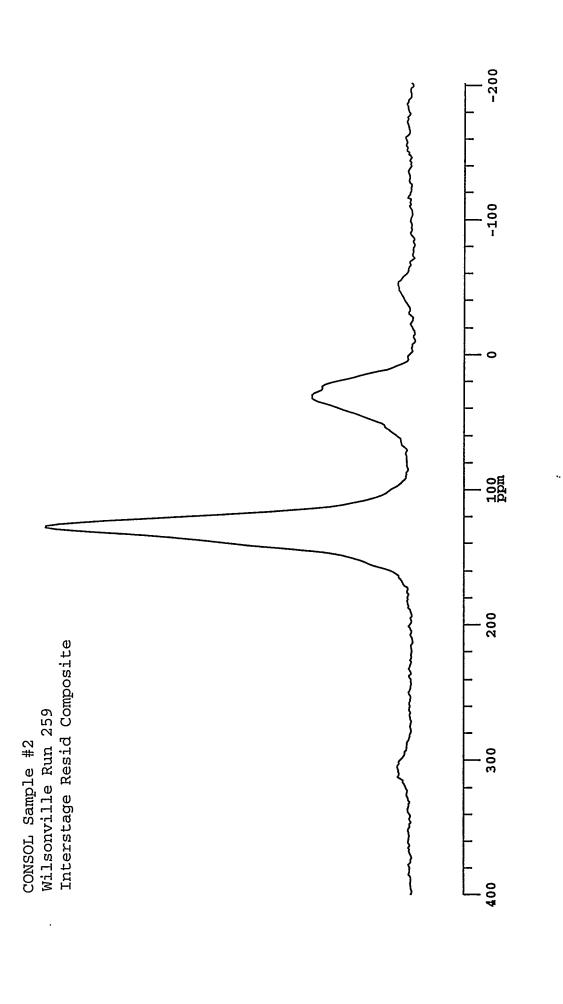
£,

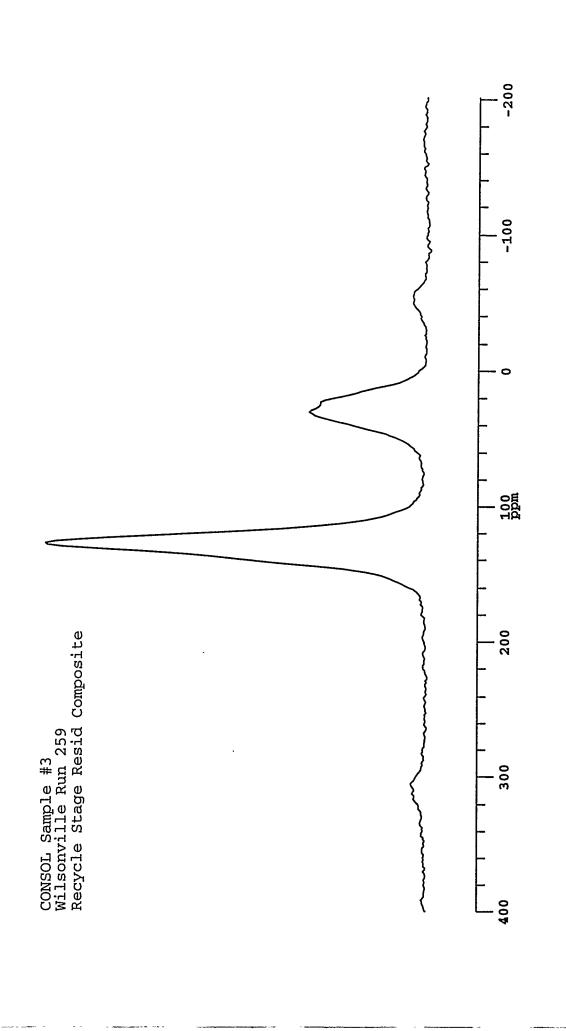
Asu. 12.

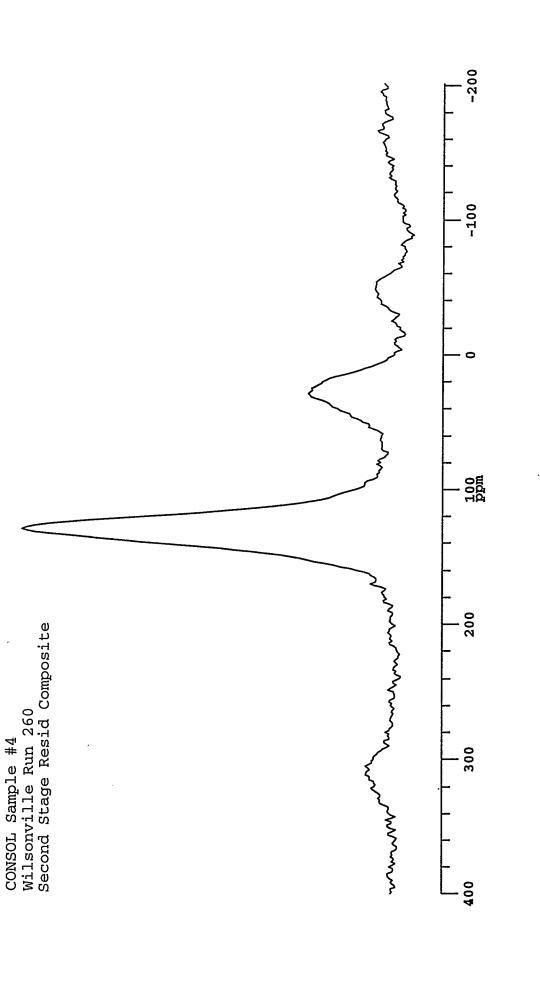
Mass City

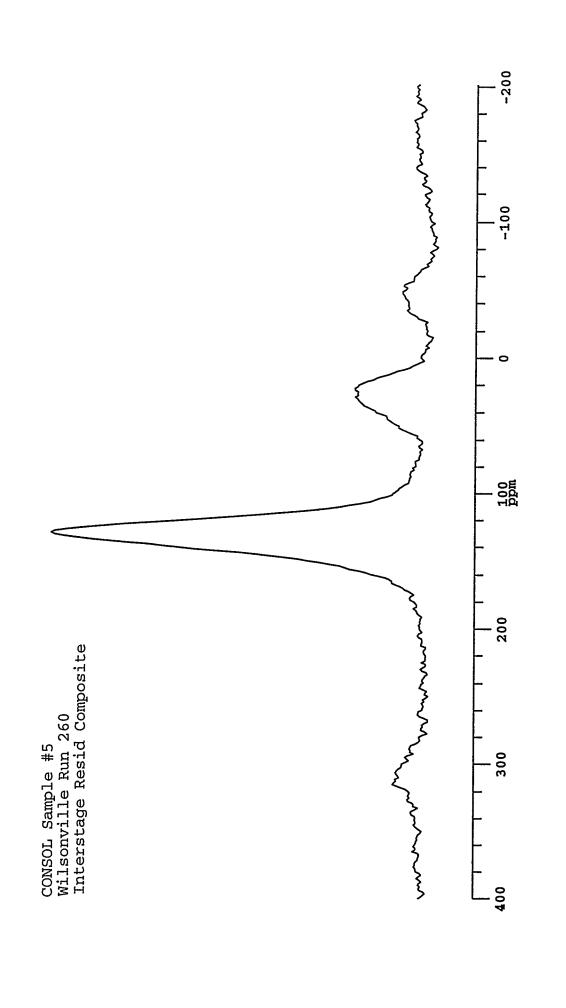

A6-40

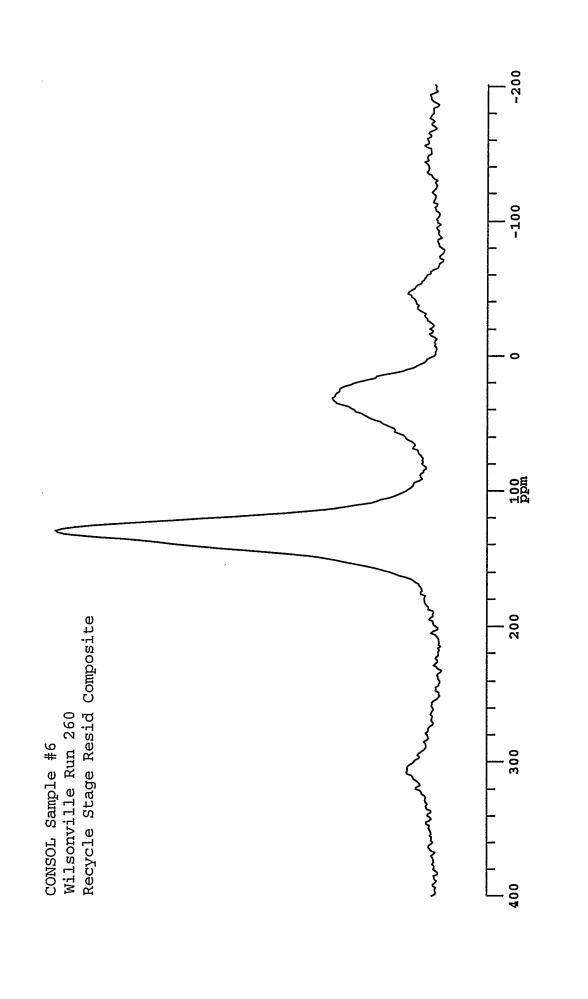

# WRI NMR Center

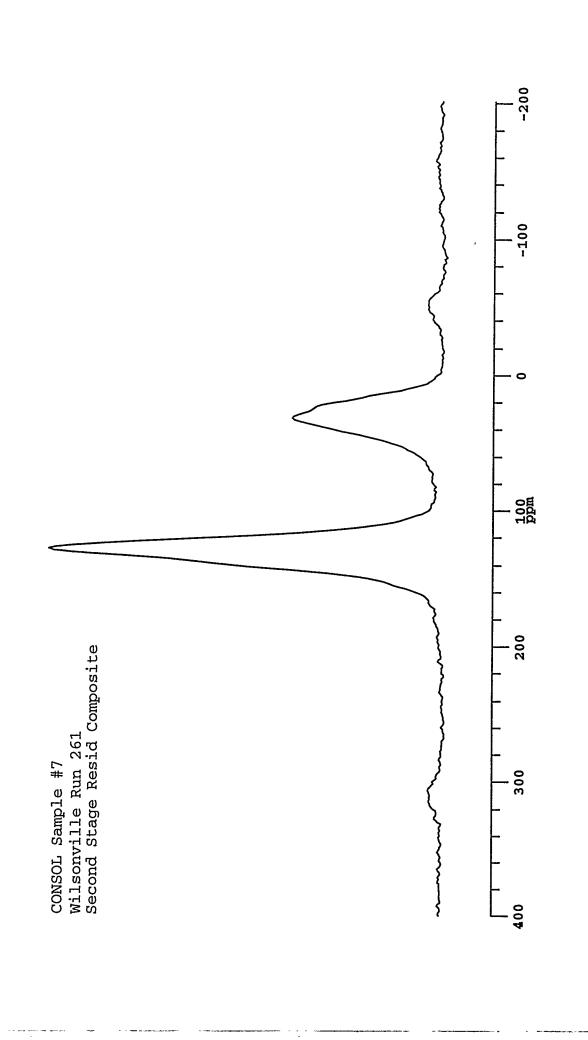


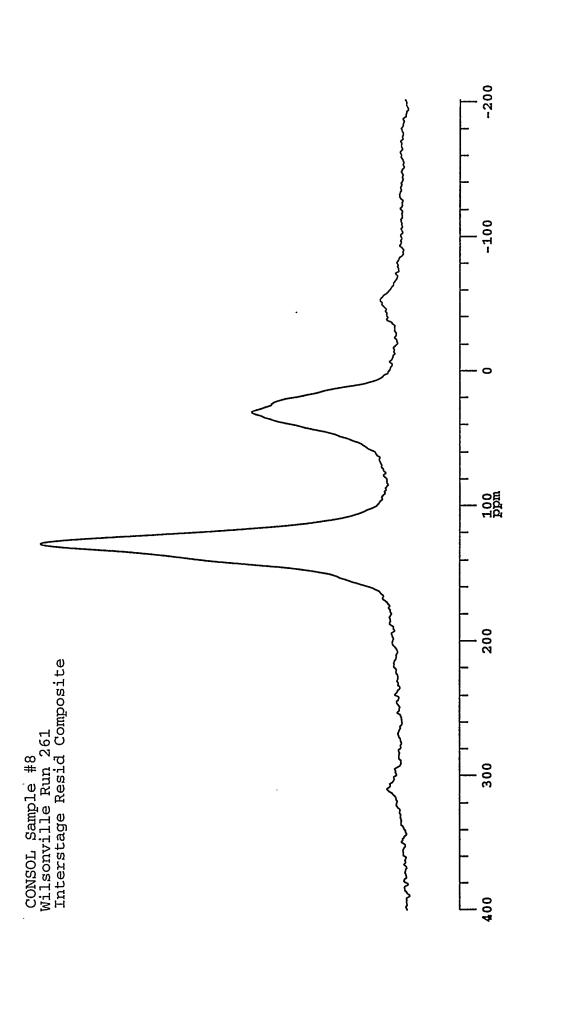


com=consol sample 1, 90.24%C, 7/27/95


do=ujdd

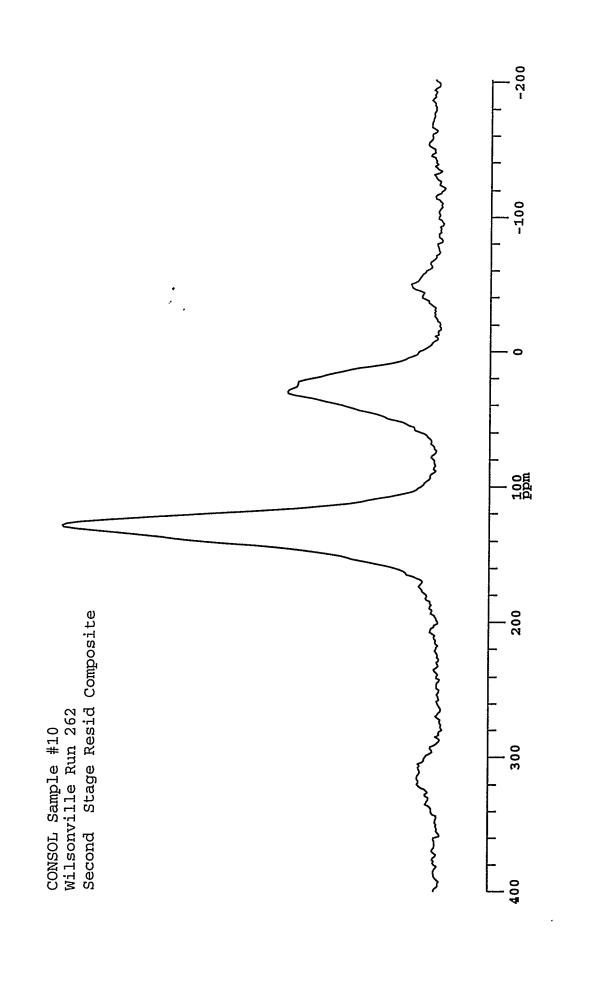


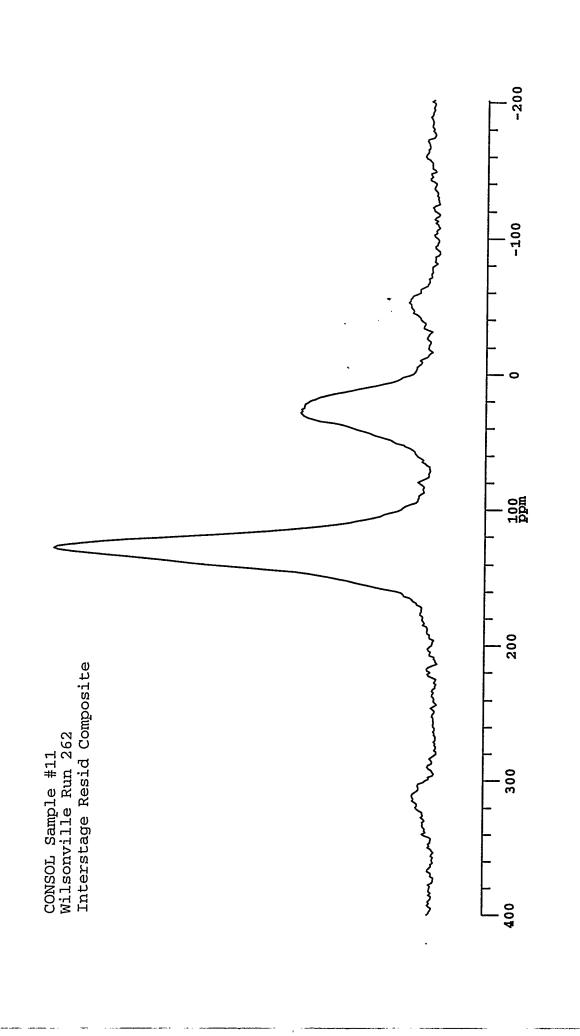



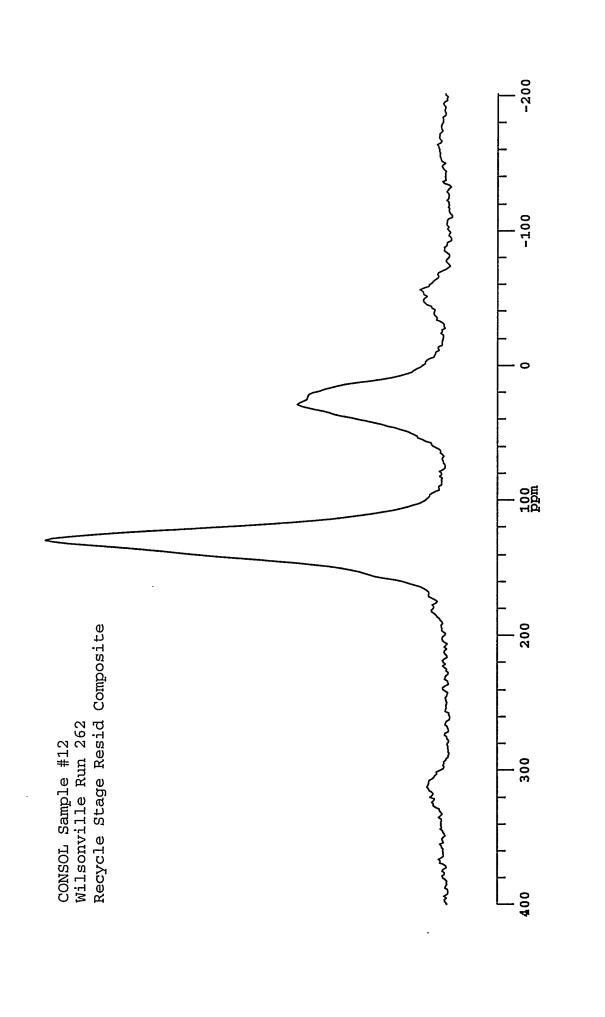



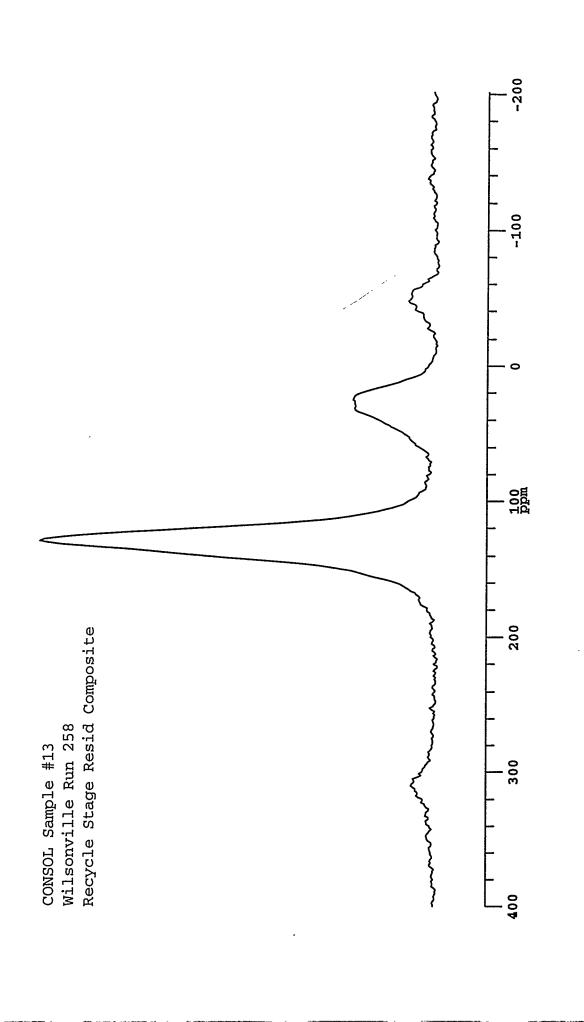



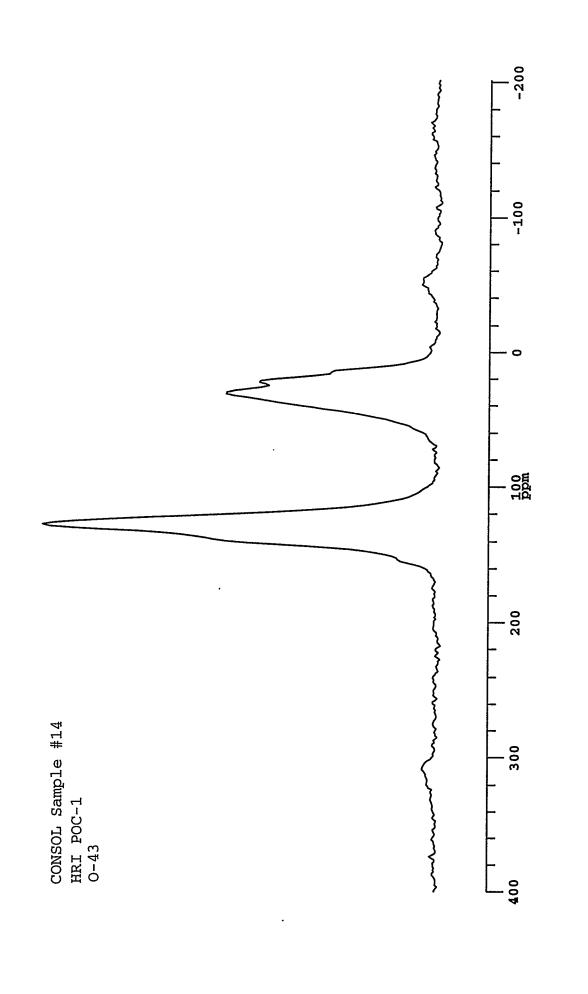


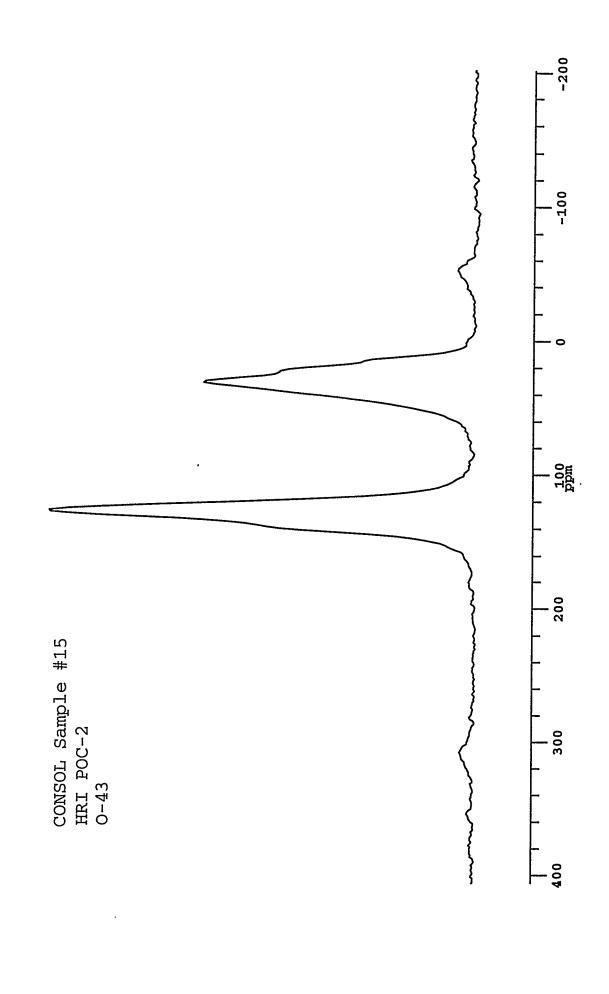



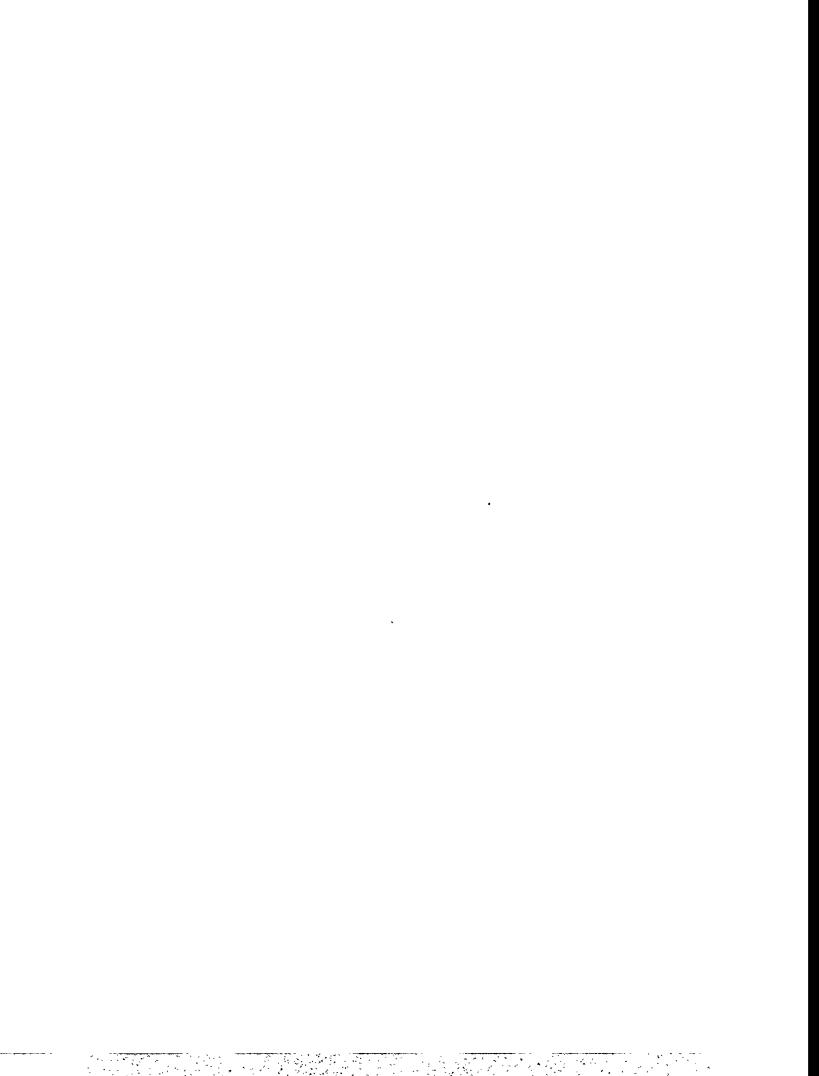














#### **APPENDIX 6**

#### **UNIVERSITY OF DELAWARE QUARTERLY REPORT**



### THE KINETICS OF COAL LIQUEFACTION DISTILLATION RESID CONVERSION

QUARTERLY REPORT 7/15/95-10/15/95

Michael T. Klein Principal Investigator

William H. Calkins Co-Principal Investigator

He Huang Postdoctoral Fellow

and

Shaojie Wang Visiting Scientist

Center for Catalytic Science and Technology
Department of Chemical Engineering
University of Delaware
Newark, Delaware 19716

Date Published October 27, 1995

Subcontract from CONSOL under DOE Contract DE-AC22-94PC93054



#### **QUARTERLY REPORT**

#### **RESID CONVERSION KINETICS**

A number of hydrocracking reactor runs have been made with Wilsonville Run 258 resid under a variety of conditions and with two catalysts (sulfided molybdenum naphthenate and Ni-Mo on alumina) A list of these runs is given in Table 1.

As pointed out in the last monthly report, we have determined the conversion of Wilsonville Run 258 resid to material boiling below 850°F to be about 30 % in one hour and about 18 % in 30 minutes. This is using 1500 psi hydrogen, 0.9 % sulfided molybdenum naphthenate. 3/1 tetralin to resid ratio and 312 °C. The conversion runs made to date are shown in Table 2. Since the conversion is determined as the product of the amount of resid solubilized and the percentage of product boiling below 850°F, the errors in either or both measurements result in compounding of errors. To remove some of the uncertainty and establish the reproducability in these figures, ten runs have been made at 435°C and 30 minutes, five with 0.9 % sulfided molybdenum naphthenate catalyst and five with no catalyst. These runs are listed in Table 3. The conversion calculation is based on Equation 1:

Conversion (850 °F⁻) = 
$$TSF \times (1 - \frac{850 °F^{+} in tetralin}{RSF in Tetralin})$$
 (1)

Where the Tetralin Soluble Fraction (TSF) is determined by ash content in the solid residue after resid processing; Resid Soluble Fraction (RSF) and 850 °F⁺ fractions in tetralin are determined by running the ramp and SimDis TG methods on the liquid products, respectively.

The analytical work to determine the conversions by this method is very time consuming and is not yet finished. It will be included in the next report.

We have also made several resid hydrocracking runs in the presence of coal, since coal is presence in the resid recycled to the reactor. These are runs listed in Table 4. Again, the actual conversions are not yet determined although the runs ran smoothly in the presence of both coal and resid.

As soon as time permits, we plan to make hydrocracking runs with the same residusing a range of concentrations of sulfided molybdenum naphthenate, to determine the rate of resid break-down at a molybdenum concentration in a more economic range.

#### MODELING

Construction of a molecular representation for a resid has recently been updated. A molecule is considered to be a collection of attributes (e.g. number of aromatic rings, number of naphthenic rings, etc.) and the attribute values are associated with a probability

density function (pdf). By stochastically sampling these pdf's a representation of approximately 10,000 molecules can be constructed which accurately represents a selected resin. Recent investigations have shown that the information within these pdf's can also be represented with a smaller number of molecules (10-100).

Construction of a small set of molecules allows construction of a deterministic reaction model by solving a set of material balance ordinary differential equations (ODE's). The traditionally Monte Carlo reaction approach requires determining each time step and reaction event one at a time which is CPU intensive. Solving a set of ODE's using software from the public domain requires only a small amount of computing time (ca. 1 second).

Most of the necessary analytical information for the CONSOL resids has been provided. Elemental analyses, resid molecular weights using FIMS, and proton NMR data have been provided. All SARA (saturates, aromatics, resins, asphaltenes, and preasphaltenes) fractions for the CONSOL resids have been received. To date, molecular weights have been determined for each of the aromatic fractions and a couple of the resin fractions. Dichlorobenzene is used for the aromatics, resins and the asphaltene fractions. Toluene is used for the saturate fractions and initially THF or pyridine is used for the preasphaltene fractions. Listed in the table 5 below are the results to date.

#### ANALYTICAL DEVELOPMENT

The Netzsch Thermogravimetric Analyzer for coupling to the mass spectrometer in the Chemistry Department for running coal liquids and resids mentioned in the previous quarterly report was tested. It was found to be very sensitive to vibration and also to have problems with the temperature control system. As a result, the instrument was returned for repairs and a mounting to eliminate most of the vibration was constructed. The instrument problems now appear to have been corrected however there is still a problem with the software which should not be too difficult to correct. Netzsch tells us they are working to correct the software.

#### QUART RLY REPORT

#### **RESID CONVERSION KINETICS**

A number of hydrocracking reactor runs have been made with Wilsonville Run 258 resid under a variety of conditions and with two catalysts (sulfided molybdenum naphthenate and Ni-Mo on alumina) A list of these runs is given in Table 1.

As pointed out in the last monthly report, we have determined the conversion of Wilsonville Run 258 resid to material boiling below 850°F to be about 30 % in one hour and about 18 % in 30 minutes. This is using 1500 psi hydrogen, 0.9 % sulfided molybdenum naphthenate. 3/1 tetralin to resid ratio and 312 °C. The conversion runs made to date are shown in Table 2. Since the conversion is determined as the product of the amount of resid solubilized and the percentage of product boiling below 850°F, the errors in either or both measurements result in compounding of errors. To remove some of the uncertainty and establish the reproducability in these figures, ten runs have been made at 435°C and 30 minutes, five with 0.9 % sulfided molybdenum naphthenate catalyst and five with no catalyst. These runs are listed in Table 3. The conversion calculation is based on quation 1:

Conversion (850 °F⁻) = 
$$TSF \times (1 - \frac{850 °F^+ in tetralin}{RSF in Tetralin})$$
 (1)

Where the Tetralin Soluble Fraction (TSF) is determined by ash content in the solid residue after resid processing; Resid Soluble Fraction (RSF) and 850 °F⁺ fractions in tetralin are determined by running the ramp and SimDis TG methods on the liquid products, respectively.

The analytical work to determine the conversions by this method is very time consuming and is not yet finished. It will be included in the next report.

We have also made several resid hydrocracking runs in the presence of coal, since coal is presence in the resid recycled to the reactor. These are runs listed in Table 4. Again, the actual conversions are not yet determined although the runs ran smoothly in the presence of both coal and resid.

As soon as time permits, we plan to make hydrocracking runs with the same residusing a range of concentrations of sulfided molybdenum naphthenate, to determine the rate of resid break-down at a molybdenum concentration in a more economic range.

#### MODELING

Construction of a molecular representation for a resid has recently been updated. A molecule is considered to be a collection of attributes (e.g. number of aromatic rings, number of naphthenic rings, etc.) and the attribute values are associated with a probability

Table 1 List of reactor runs (P=1500 psig)

Run	Т, С	t, min	Catalyst	SA	T:R	Gas	Rec., wt%
C001	19	15			3	H2	79.8%
C002	414	15			3	N2	25.5%
C003	408	15			3	H2	73.6%
C004	410	7			3	N2	74.3%
C005	409	15			3	N2	84.4%
C006	411	15		Yes	3	H2	91.2%
C007	408	15		Yes	3	N2	76.5%
C008	406	15	Mo-naph	Yes	3	N2	98.1%
C009	408	15	Mo-naph	Yes	3	H2	76.3%
C012	400	15	Mo-naph		3	N2	42.6%
C013	400	15	Mo-naph		3	N2	38.0%
C014	392	15	Mo-naph		5	N2	55.2%
C015	403	15	Mo-naph		3	H2	92.6%
C016	406	15	Mo-naph		3	N2	38.7%
C017	409	0.06	Mo-naph	Yes	3	H2	80.2%
C018	408	1	Mo-naph	Yes	3	H2	76.3%
C019	412	3	Mo-naph	Yes	3	H2	62.1%
C020	410	5	Mo-naph	Yes	3	H2	91.3%
C021	411	10	Mo-naph	Yes	3	H2	95.1%
C022	408	30	Mo-naph	Yes	3	H2	80.9%
C023	422	40	Mo-naph	Yes	3	H2	68.5%
C024	408	60	Mo-naph	Yes	3	H2	95.4%
C025	419	0.06	Mo-Ni/Alumina		2	H2	47.5%
C026	420	1	Mo-Ni/Alumina		2	H2	54.4%
C027	410	3	Mo-Ni/Alumina		2	H2	66.2%
C028	409	5	Mo-Ni/Alumina		2	H2	65.2%
C029	410	10	Mo-Ni/Alumina		4	H2	69.4%
C030	400	15	Mo-Ni/Alumina		2	H2	36.2%
C031	405	15	Mo-Ni/Alumina		3	H2	49.1%
C032	405	15	Mo-Ni/Alumina		4	H2	80.5%
C033	412	60	Mo-Ni/Alumina		4	H2	70.6%
C034	405	-30	Mo-Ni/Alumina		4	H2	72.8%
C035	21	0			3		washing
C036	21	0			3	THF wa	_
C037	21	0	Mo-Ni/Alumina		3		washing
C038	27	15			3	N2	69.8%
C039	27	15	Mo-Ni/Alumina		3	N2	53.3%
C040	27	15	Mo-naph	Yes	3	N2	71.5%
C041	432	30	Mo-naph	Yes	3	H2	76.2%
C042	436	60	Mo-naph	Yes	3	H2	93.3%

Table 2 Preliminary Results of the Resid Conversion

	Conversion wt%		2.6%	13.6%	15.9%	11.8%	24.8%	4.9%	18.3%	13.6%	16.9%	13.1%	13.5%	18.7%	18.6%	30.1%
	850 F+ in Tetralin wt%		3.56%	7.68%	8.69%	8.28%	6.73%	8.92%	6.83%	5.42%	7.94%	10.79%	7.35%	7.78%	10.23%	7.28%
	RSF in Tetralin wt%		3.74%	9.82%	11.81%	10.46%	10.95%	69.6	9.51%	7.02%	10.91%	13.74%	9.34%	11.18%	14.33%	12.96%
	TSF wt%	1	54.7%	62.6%	60.2%	56.7%	64.4%	62.0%	64.8%	59.9%	62.1%	60.9%	63.4%	61.4%	64.9%	68.8%
	Ash (TGA) wt%	16.2%	35.7%	43.3%	40.7%	37.4%	45.4%	42.6%	46.0%	40.3%	42.7%	41.4%	44.2%	42.0%	46.0%	51.8%
	Gas	ľ	H2	H2	N	N2	H2	N2	H2	≘	H2	H2	H2	H2	H2	Н2
	SA 8				-	-	-				_	_		_	-	-
i	Catalyst					Mo-naph.	Mo-naph.	Mo-naph.	Mo-naph.	Mo naph.	Mo-naph.	Mo-naph.	Mo-naph.	Mo-naph.	Mo-naph.	Mo-naph.
	t min		15	15	15	15	15	15	15	0.00		m	8	10	30	90
	CJ		19	411	408	406	408	392	403	409	408	412	410	411	408	408
ı	Name	Reisd	C001	C006	C007	C008	C009	C014	C015	C017	C018	C019	C020	C021	C022	C024

Table 3 List of multiple reactor runs (P=1500 psig)

Run	т, с	t, min	Catalyst	SA	T:R	Gas	Rec., wt%
C047	435	30	Mo-naph	Yes	3	Н2	89.6%
C048	435	30	Mo-naph	Yes	3	H2	92.9%
C049	436	30	Mo-naph	Yes	3	H2	89.7%
C050	436	30	Mo-naph	Yes	3	H2	91.5%
C051	437	30	Mo-naph	Yes	3	H2	78.7%
C052	437	30			3	H2	89.7%
C053	436	30			3	H2	80.5%
C054	436	30			3	H2	88.0%
C055	437	30			3	H2	72.1%
C056	436	30			3	H2	83.3%

Table 4 List of co-processing reactor runs (P=1500 psig)

Run	T, C	t, min	Catalyst	SA	Resid:Coal*	T:R or T:C or T:(R+C)	Gas	Rec., wt%
C043	420	30	Mo-naph	Yes	Coal only	ю	H2	43.1%
C044	420	09	Mo-naph	Yes	Coal only	3	H2	61.4%
C045	436	30	Mo-naph	Yes	2	m	H2	96.1%
C046	435	09	Mo-naph	Yes	2	e	H2	82.7%

Black Thunder coal

Table 5 Analytical Results of the Resids

Sample #	Saturate MW	Aromatic M W	Resin MW	Asphaltene M W	Pre- Asphaltene M W
1		320			
2		274	613		
3		319	568		
4		362			
5		493			
6		420			
7		348			
8		425			
9		323			
10		430			
11		386			
12		413			
13		336			
14		356			
15		345			